
Constructing a tool to identify if two
texts have the same meaning.

Authors: Thomas Guegan & Mickaël Bobovitch

Abstract

This report presents an approach to identify the semantic similarity between two
texts using lexical analysis and cosine similarity. The goal is to develop a tool that
can accurately determine if two text inputs have the same meaning or not. The
solution leverages the NLTK library for text preprocessing, Spacy for lexical similarity
checks, and cosine similarity for overall text comparison. The report describes the
development process, highlights the key components of the solution, provides an
analysis of the results, and proposes potential enhancements using BERT-based
contextual embeddings for future improvements.

1. Introduction

The objective of this project is to create a tool that can compare the meaning of two
text inputs and determine if they convey the same message or have distinct
meanings. Traditional approaches often rely on lexical analysis or simple similarity
metrics, which may not capture the nuances of language and context. Therefore, this
project aims to enhance the accuracy of text comparison using semantic analysis,
synonyms, and cosine similarity, taking into account both lexical and overall text
similarity.

2. Development

The solution was implemented using Python and relied on the NLTK library for text
preprocessing and analysis. The development process involved several key steps:

2.1 Preprocessing

Text preprocessing is an essential step in preparing the texts for analysis. It involves
tokenization, lowercase conversion, removal of stopwords, and lemmatization. The
NLTK library provides useful functions for these tasks. Here's an example code
snippet presenting the preprocessing step:

def preprocess_text_nltk(text):

tokens = word_tokenize(text.lower()) # Tokenize and convert to

lowercase

tokens = [word for word in tokens if word.isalpha()] # Remove

non-alphabetic characters

tokens = [word for word in tokens if word not in stop_words] #

Remove stopwords

lemmatizer = nltk.WordNetLemmatizer()

tokens = [lemmatizer.lemmatize(word) for word in tokens] # Lemmatize

words

return tokens

The output if we provide the text “The sun is shining brightly today” will be: ['sun',
'shining', 'brightly'].

2.2 Cosine Similarity

Cosine similarity is a metric commonly used to measure the similarity between two
vectors. In the context of text analysis, we can represent texts as vectors using term
frequency vectors. The scikit-learn library provides functions for calculating cosine
similarity. We used different ways of processing the text before calculating this
similarity so here are the two functions we used in the end to compute the similarity.

def calculate_soft_cosine_similarity(text1, text2):

tfidf_vectorizer = TfidfVectorizer()

tfidf_matrix = tfidf_vectorizer.fit_transform([text1, text2])

soft_similarity = cosine_similarity(tfidf_matrix)[0][1]

return soft_similarity

def calculate_similarity_nltk(text1, text2):

tokens1 = preprocess_text_nltk(text1)

tokens2 = preprocess_text_nltk(text2)

Create a set of unique words from both texts

unique_words = list(set(tokens1 + tokens2))

Generate word vectors for the unique words

vector1 = [tokens1.count(word) for word in unique_words]

vector2 = [tokens2.count(word) for word in unique_words]

Calculate cosine similarity

similarity = cosine_similarity([vector1], [vector2])[0][0]

return similarity

The first one uses a TdifVectorizer while the second one uses the
preprocess_text_nltk function we implemented before.

The output will be the cosine similarity score between the two texts. Then we use
these results to compute the product of the two cosine distances and set a threshold
that decides if the two texts have the same meaning based on this threshold.

We thought of this method to try to minimize the error due to one way of processing
the text. Using two different methods we believe that we could achieve a better result
that with one method alone.

2.3 Lexical Similarity

Lexical similarity allows us to compare the semantic relations between words. Spacy
contains a lexical database that can be used to check the similarity between words
based on their semantic relations. We tried to implement lexical similarity using
Spacy by using the “.similarity()” methods that provide the lexical similarity between
two words. At first we extracted the different nouns, adjectives and verbs of each
sentence and then compared them to get the similarity value between the lexical
field of each sentence. However this method was not really successful, we believe
that our method of comparison could be improved more by changing the methods to
compute the similarity of a set based on the similarity between each element. Still
here is an example of the code we tried to set up for this method :

def word_similarity(sentence1,sentence2):

Extract POS tags

nouns1, adjectives1, verbs1 = extract_pos_tags(sentence1)

nouns2, adjectives2, verbs2 = extract_pos_tags(sentence2)

noun_sim = []

for i in nouns1:

for j in nouns2:

#print(i, " ",j ," ", i.similarity(j))

noun_sim.append(i.similarity(j))

n_sim_value = 0

for i in noun_sim:

n_sim_value = n_sim_value+i

In this code snippet we use the “extract_pos_tags()” methods provided by Spacy to
identify the nouns, verbs and adjectives of the two sentences. Then we compute the
sum of all similarity scores inside the nouns to make an average of this similarity
later on. Using those 3 averages we tried to compute a “score of similarity” between
the two sentences but it wasn’t really successful. The best results of this methods
were at most 50% of correct predictions which isn’t really good.

3. Summary

The implemented solution successfully addresses the task of identifying semantic
similarity between two texts. However the score of 67.5% of correct prediction might
not be enough and should be improved to be used as a great tool.

The preprocessing step standardizes the texts and removes noise, improving the
accuracy of subsequent analyses. The lexical similarity check using Spacy allows for
the detection of words in the same lexical field, capturing synonymous relationships.
Incorporating cosine similarity provides an overall similarity assessment by
considering the frequency of terms in the texts.

We believe that our approach to use the combination of lexical analysis and cosine
similarity is robust for detecting similar meanings in sentences. However we could
also improve the tool by implementing a “context checking” methods to analyze in
which context each word is used because it usually have a big impact on the
meaning of a sentence.

Based on our research, it seems that enhancing our tool by considering the
surrounding context and meaning of words could be achieved using BERT-based
contextual embeddings. This approach would provide a more nuanced
understanding of the texts and potentially improve the accuracy of similarity
detection.

4. Bibliography
● NLTK Documentation, by Steven Bird

(https://buildmedia.readthedocs.org/media/pdf/nltk/latest/nltk.pdf)
● Scikit-learn documentation

(https://scikit-learn.org/stable/user_guide.html)
● Tkinter Documentation

(http://tkdocs.com/tutorial/index.html)
● Ressource : WordNet, A Lexical Database for English

(https://wordnet.princeton.edu/)

https://buildmedia.readthedocs.org/media/pdf/nltk/latest/nltk.pdf
https://scikit-learn.org/stable/user_guide.html
http://tkdocs.com/tutorial/index.html
https://wordnet.princeton.edu/

● Spacy Documentation
(https://spacy.io/api/doc)

● BERT Explained: State of the art language model for NLP by Rany Horev
(https://towardsdatascience.com/bert-explained-state-of-the-art-language-mod
el-for-nlp-f8b21a9b6270)

https://spacy.io/api/doc
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270

