Stock Prediction

Python Programming Final Project

Table of Contents

0. Abstract

1. Introduction

2. Development
i. Setting Environment
1 Library import
2 Dictionary definition
ii. Initializing class definition
iii. Dataset creation

iv. Model construction

V. Prediction
Vi. Plotting
Vii. Example
Viii. Dashapp

3. Conclusion

i. Summary

ii. Analysis of result

4. Bibliography

[Abstract]

In this project, the stock price of the stock market for a specific company will be predicted and
visualized. Stock price is being predicted by building a model using historical stock price data, and the
flow of stock price will be displayed in plot. One of the Recurrent Neural Network (RNN) model, Long
Short Term Memory (LSTM) neural network model is used for this process. Finally, for the Graphical

User Interface (GUI), we create a website which shows the plot by using Dashapp.

1. Introduction

Stock market is one of the most fascinating inventions of our time. They have had a
significant impact on many areas like business, education, jobs, technology and thus
on the economy. Over the years, investors and researchers have been interested in
developing and testing models of stock price behavior. However, analyzing stock
market movements and price behaviors is extremely challenging because of the
markets dynamic, nonlinear, nonstationary, nonparametric, noisy, and chaotic nature.
Stock markets are also affected by many highly interrelated factors that include

economic, political, psychological, and company-specific variables.'

Models for example, artificial Neural Network (ANN), Deep Neural Network (DNN),
Convolutional Neural Network (CNN), Long Short Term Memory (LSTM) are commonly

being used for stock price prediction.

ANN (Artificial Neural Networks) is a mathematical model or computational model that
is inspired by the structural and functional aspects of biological neural networks. A
single neural network call, or a perceptron, has an interconnected group of artificial
neurons, which process computational information by using a connectionist approach

from node to node.

DNN (Deep Neural Network) is generally a stack of multiple hidden layers instead of
only one hidden layer in the standard ANN architecture. The DNN hidden layers are
the multiple feed-forward layers that are trained with a back-propagation stochastic
gradient descent. DNN has features such as an adaptive learning rate, rate annealing,
momentum training, drop out, and regularization. These features are believed to be

able to have a higher predictive accuracy compared to the regular ANN.

Shah, D.; Isah, H.; Zulkernine, F. Stock Market Analysis: A Review and Taxonomy of Prediction Techniques. Int. J. Financial Stud. 2019, 7, 26.
https://doi.org/10.3390/ijfs7020026

CNN (Convolutional Neural Network) is basically composed of layers of convolutions
consisting of neurons, with tanh, ReLU being applied to the results. CNN uses
convolutions over the input layer to compute the output. An individual layer of CNN
applies different types of filters. The edges of the layers capture the shape of the data,
and then they use these shapes to determine higher-level features. The last layer

classifies the output by using these high-level features.

RNN(The Recurrent Neural Network) makes use of sequential information, The RNN
the inputs and outputs as a dependent variable based on a time sequence. RNN
performs the same task for every element of a sequence. The output at the last time
step of RNN is dependent on the previous computations. RNN may be considered to
have a “memory”, as it can capture information about calculations in past sequences.
However, RNN has a limitation in capturing the length of the data. This leads to the
development of the LSTM network, which can capture longer sequences of

information.’

In this project, we will try to predict the stock price of a specific company based on time
series data of stock price from Yahoo Finance using Long Short Term Memory (LSTM)
model from Recurrent Neural Network (RNN). LSTM model is generally thought to be

useful to analyze and predict time series data.

Recurrent networks can in principle use their feedback connections to store
representations of recent input events in the form of activations. This is significant for
many applications. The most widely used algorithms for learning what to put in
short-term memory, however, took too much time or did not work well at all, especially
when minimal time lags between inputs and corresponding teacher signals are long.
So, LSTM was a novel recurrent network architecture in conjunction with an
appropriate gradient-based learning algorithm. LSTM is designed to overcome these
error back-flow problems. It can learn to bridge time intervals in excess of 1000 steps

even in case of noisy, incompressible input sequences, without loss of short time lag

Khumprom, P.; Yodo, N. A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm. Energies 2019, 12, 660.
https://doi.org/10.3390/en12040660

capabilities. This is achieved by an efficient, gradient-based algorithm for an

architecture enforcing constant error flow through internal states of special units. ®

‘Dashapp’ library, which is used for GUI, is a framework for visualizing data. It can
show the result of analysis in a website based on user actions. For this project, we

display the graph of predicted stock prices using the LSTM stock prediction model.

The objective of this project is to create a neural network model capable of predicting

the stock prices for the most important companies assets.

2. Development
i Setting environment
1 Library import

Code :

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM
import plotly.graph objects as go

from dash import dcc

from dash import html

from dash.dependencies import Input, Output
from jupyter dash import JupyterDash

import dash bootstrap components as dbc

Import the libraries needed for implementation. Numpy, pandas, matplotlib, sklearn, tensorflow, plotly

are being used for this project.

2 Dictionary definition

Code :

3
Hochreiter S, Schmidhuber J . "Long Short-Term Memory" Neural computation : 1735-1780.

companies = {

"AAPL": "Apple",

"MSFT": "Microsoft",
"AMZN": "Amazon",

"GOOG": "Alphabet",

"FB": "Facebook",

"BRK": "Berkshire Hathaway",
"IJNJ": "Johnson & Johnson",
"v": "Visa",

"JPM": "JPMorgan Chase",
"PG": "Procter & Gamble",
"NVDA": "NVIDIA",

"MA": "Mastercard",

"HD": "Home Depot",

"UNH": "UnitedHealth Group",
"DIS": "Walt Disney",
"BAC": "Bank of America",
"PYPL": "PayPal",

"TSLA": "Tesla",

"vz": "Verizon",

"NFLX": "Netflix",

"ADBE": "Adobe",

"CMCSA": "Comcast",

"INTC": "Intel",

"CSCO": "Cisco",

"PFE": "Pfizer",

"WMT": "Walmart",

"ABT": "Abbott Laboratories",
"ABBV": "AbbVie",

"CRM": "Salesforce",
"COST": "Costco Wholesale",
" "AT&T"

Defining a dictionary which includes names of companies as value and key for each company.

ii. Initializing class definition

Code :
class Finpred:
def init (self, company name, end date, num prev days):
self.company name = company name
self.end date = end date
self.num prev days = num prev days

Class named ‘Finpred’ is starting to be built from this part. The ‘__init_ ' method initializes the

instance variables of the class. Variable named company_name is for the name of the company
whose stock prices will be predicted. Variable end_date is the end date for downloading historical
stock price data and num_prev_days is the number of previous days’ stock prices to consider for

prediction.

iii. Dataset creation

Code :

def df (self):

return
pd.read csv(f'https://queryl.finance.yahoo.com/v7/finance/download/{sel
f.company name}?periodl=0&period2={self.end date}&interval=Ild&events=hi
story')

def load data(self,):
Process the data
df = self.df()

df ['Date'] = pd.to datetime(df['Date'])
df = df.set index('Date')
df = df[['Close']]

Normalize the data
scaler = MinMaxScaler (feature range=(0, 1))
scaled data = scaler.fit transform(df.values)

Split into train and test sets

train size int (len(scaled data) * 0.8)

train data = scaled data[:train size, :]

test data = scaled data[train size-self.num prev days:, :]

Prepare training and testing data
self.x train, self.y train = self.create dataset (train data)
self.x test, self.y test = self.create dataset (test data)

def create dataset (self, data):

x, v = [1, []
for 1 in range(self.num prev days, len(data)):
x.append (data[i - self.num prev days:i, 0])

y.append (datal[i, 0])
return np.array(x), np.array(y)

First, ‘df method retrieves historical stock price data from Yahoo Finance for the specified company

using the pandas library. It constructs a URL with the company_name and end_date, and fetches the

data as a pandas data frame, and returns it.

For the ‘load_data’ method, this method processes the retrieved stock price data. It first calls the ‘df’
method to fetch the data. Second, it converts the ‘Date’ column to a ‘datetime’ data type and sets the
‘Date’ column as the index of the data frame. Then, selects only the ‘Close’ column, which represents
the closing prices. Next, it normalizes the closing prices using the MinMaxScaler from
sklearn.preprocessing. And the normalized data is split into train and test data sets, 80% for training
and 20% for testing. Finally by calling the ‘create_dataset’ method, input-output pairs for training and

testing are created.

Method ‘create_dataset’ takes in a numpy array of data and creates input-output pairs for the RNN
model. It slices the data based on the number of previous days specified. Each input contains the

closing prices of the preceding days, and the corresponding output is the closing price of the next day.

iv. Model construction

Code :

def build model (self):
Build the RNN model
self.model = Sequential ()
self.model.add (LSTM (units=50, return sequences=True,
input shape=(self.num prev days, 1)))
self.model.add (LSTM (units=50))
self.model.add (Dense (units=1))

Compile the model
self.model.compile (optimizer="adam', loss='mean squared error')

def train model (self):
Train the model
self.model.fit (self.x train, self.y train, epochs=5,
batch size=32)

Method ‘build_model’ constructs the RNN model using the Keras library. It defines a sequential model
with two LSTM layers followed by a dense layer. The model is compiled with the Adam optimizer and

the means squared error (MSE) loss function.

The ‘train_model’ method trains the RNN model using the training data. It fits the model to the

input-output pairs with 5 epochs and batch size 32.

V. Prediction

Code :

def predict (self):
Make predictions
train predictions = self.model.predict(self.x train)
test predictions = self.model.predict(self.x test)

Transform the predictions to original scale
scaler = MinMaxScaler (feature range=(0, 1))

scaler.fit (pd.DataFrame (self.df () ['Close']))
train predictions = scaler.inverse transform(train predictions)
test predictions = scaler.inverse transform(test predictions)

return train predictions, test predictions

This method makes predictions using the trained model. It uses the trained model to predict the
closing prices for both the training and testing datasets. As the predictions were initially scaled, the
method inversely transforms them to the original scale using the MinMaxScaler. Finally, it returns the

predictions for both the training and testing datasets.

Vi. Plotting

Code :

def plot predictions(self, train predictions,
test predictions, company) :
df=self.df ()
train actual =
df.iloc[self.num prev days:len(train predictions) + self.num prev days,
:]['Close'].values
test actual = df.iloc[len(train predictions) +
self.num prev days:, :]['Close'].values
train predictions = train predictions.flatten()
test predictions = test predictions.flatten()
index=pd.date range(df['Date'][0],
df['Date'] [len(df['Date'])-1]1, freg='D")

fig = go.Figure ()

fig.add trace(go.Scatter (x=index[self.num prev days:len(train predictio
ns) + self.num prev days], y=train actual, name='Actual Price Train'))

fig.add trace(go.Scatter (x=index[self.num prev days:len(train predictio
ns) + self.num prev days], y=train predictions, name='Predicted Price
Train'))

fig.add trace(go.Scatter(x=index[len(train predictions) +
self.num prev days:], y=test actual, name='Actual Price Test'))

fig.add trace(go.Scatter(x=index[len(train predictions) +
self.num prev days:], y=test predictions, name='Predicted Price Test'))

fig.update layout (title=f"Stock Price Prediction for
{company}",
xaxis title="Time",
yaxis title="Price",
legend title="Legend",
width=800,
height=500) #, paper bgcolor="gray")

fig.show ()

The method visualizes the predicted results, simultaneously comparing to the actual stock prices. It

plots the actual and predicted closing prices for both the training and testing datasets using Plotly.

Vii. Example
Code :
company name = 'Alphabet'
end date = int(pd.Timestamp ("2014-05-28") .timestamp ())
num prev _days = 50
name = [i for i, v in companies.items() if v == company name] [0]

finpred = Finpred(name, end date, num prev days)

finpred.load data()

finpred.build model ()

finpred.train model ()

train preds, test preds = finpred.predict()

finpred.plot predictions(train preds, test preds,company name)

Result :

Stock Price Prediction for Alphabet

Legend

Actual Price Train
——— Predicted Price Train
——— Actual Price Test
——— Predicted Price Test

Price

2005 2006 2007 2008 2009 2010 2011

Time

This is an example of stock price prediction for ‘Alphabet’. Purple line is actual prices of the train data
and red line is predicted prices of train data. Data is divided for two part around 2010 from this plot,
and that is the point where plot switches to test data. Green line is actual prices of the test data and
purple line is predicted prices of test data. Those two lines have a similar flow, so for this ‘Alphabet’

company, our model is predicting stock prices well.

Additionally, another example for ‘Visa’.

Stock Price Prediction for Visa

60 Legend

—— Actual Price Train
—— Predicted Price Train
—— Actual Price Test
—— Predicted Price Test

50

40

Price

30

20

2009 2010 2011 2012

Time

This example is showing a good performance for predicting stock prices as well. Line of predicted

price follows the flow of the actual price line. Therefore we can know predicted prices resemble actual

prices.

viii.

Dashapp

C & jBxvrhpoaio-496ff2e9c6d22116-8050-colab.googleusercontent.com

Stock Price Prediction

Select a company:
GOOG

Stock Price Prediction for selected company

Legend

—— Actual Price Train

A —— Predicted Price Train
Y —— Actual Price Test
—— Predicted Price Test

Price

Jan2011 Jul2011 Jan2012 Jul2012 Jan2013 Jul2013 Jan2014

Time

We used Dashapp for the user interface. From Dashapp, a website for stock prediction is made. User

can select one of the options of companies and the website shows a graph of actual and predicted

stock prices for the both training and test datasets.

3. Conclusion

Summary

We constructed a LSTM model for stock price predictions by using historical stock
price data from Yahoo Finance. Stock price data is retrieved from Yahoo Finance by
URL using each different company name and end date which user wants. Dataset is
created as input-output pairs form, and it is split to training dataset and testing dataset.
Input represents the closing prices of the preceding days based on the specified
number of previous days and output is the next day’s closing price. Then we build the
LSTM model using Adam optimizer and MSE loss function. With the built model,
closing price predictions are calculated for both the training and testing dataset. And
finally, actual and predicted closing prices are plotted in one graph so that we can
simply understand the flow of stock price change and check if the predicted prices

resemble actual prices.

Analysis of result

From the example graph of ‘Alphabet’ and ‘Visa’, we can see a good precision of

prediction that predicted values for the test dataset have similar flow with actual

values. Therefore, by our LSTM prediction model, we can well predict the stock
price of a specific company generally. But as the stock market still has lots of
elements which are hard to predict, the actual price for the future can be different,
thus we should be aware of the instability of the market and not fully rely on the
prediction. Besides that,we noticed that the predictions are delayed, namely, the
model does not predict the change in price instantly, but it takes time for it to start
following the actual trend of the price. However, we anticipate that this project will
be useful as a reference for stock price prediction. From this result, we can further

develop the prediction model by using other elements related to stock price.

4. Bibliography
1 Shah, D.; Isah, H.; Zulkernine, F. Stock Market Analysis: A Review and Taxonomy of
Prediction Techniques. Int. J. Financial Stud. 2019, 7, 26. https://doi.org/10.3390/ijfs7020026

2 Khumprom, P.; Yodo, N. A Data-Driven Predictive Prognostic Model for Lithium-ion
Batteries based on a Deep Learning Algorithm. Energies 2019, 12, 660

3 Hochreiter S , Schmidhuber J . "Long Short-Term Memory" Neural computation :
1735-1780

Code was based on:

https://towardsdatascience.com/predicting-stock-prices-using-a-keras-Istm-model-4225457f0
233

https://towardsdatascience.com/predicting-stock-prices-using-a-keras-lstm-model-4225457f0233
https://towardsdatascience.com/predicting-stock-prices-using-a-keras-lstm-model-4225457f0233

