CREATING CHATBOT
WITH FUZZY REGULAR
EXPRESSIONS

Presented by
Natural Language Processing Nurbek Mauletkhan

Ac. Year 2023/2024 Marina Nurgaliyeva

1 Project description

CONTENT T
3 Theoretical Concepts
4 Implementation and Results
—
5 Summary

i

—
_ﬁ 6 References
([— |

Chatbot

Restaurant Reservation
Assistant Bot
Answers questions related

to restaurant reservations,

menu, address and other
common questions

PROJECT DESCRIPTION

Fuzzy machining
algorithm

We aimed to improve the
chatbot's accuracy and
flexibility in understanding
user intent, even with

minor typographical errors or
variations in phrasing.

Enhancing
accessability

We implemented
accessibility

features such as high-
contrast mode, large text,
and voice interaction to
support visually impaired
users

METHODOLOGY

Programming Language: Python

Framework: Flask for web application
development

Fuzzy Matching: thefuzz library for implementing
fuzzy regular expressions

Accessibility: Web technologies such as HTML,
CSS, and JavaScript for creating an accessible
user interface

Voice Interaction: Web Speech API for voice
INput and output

Data Storage: JSON file for storing intents and
responses

Theoretical Concepts

®
What is fuzzy
It's a technique used to identify two elements of

®
string
o text strings that match partially but not exactly. It
m q tc h I n g ? Involves a rough comparison of two texts and

allows you to determine the similarity between two

texts.

“Helo” = “Hello”
"working hourS” = “working hours”

Theoretical Concepts

How to
" maxii, j) it munii, j) =0, d ete r m i n e t h e

ev, ,(i— 1 j)+ 1

levap(6.)) = min < lev, 6,7 — 1)+ 1 otherwise, C I Ose n eSS Of

! llDVﬁJJi-— Lj— 1+ Lz,

two strings?

Strl = "Apple Inc.'

Str2 = "apple Inc”
Distance = levenshtein_ratio_and_distance(Strl,6Str2)
print(Distance)

Ratio = levenS'*I‘EE!in_r‘a’iiO_aI‘ld_diStaﬂce _Stl‘l, St!‘?, I‘atiO_Céﬂ.C rye) Levenshtein distance iS G
print(Ratio,
measure that calculates
The strings are 2 edits away .
_] " ”’ distance of two sequences of

D.8421052631578947

words from each other.

Theoretical Concepts

TheFuzz is a Python package that uses a
combination of fuzzy logic and distance
Levenshtein to find the similarity between
two strings.

TheFuzz | |
It provides several methods for different
Packa ge types of fuzzy matching:

- Simple Ratio

- Partial Ratio

- Token Sort Ratio
- Token Set Ratio

from thefuzz import fuzz

Theoretical Concepts

Order matters with partial ratio

P A RTI A I R A TI # Check the similarity score
name = "Kurtis Pykes”

full name = "Kurtis Pykes K D"

print(f"Partial ratio similarity score: {fuzz.partial ratio(name, full name)}")

compares the shortest string to
all possible substrings of the
longer string. It finds the best
possible match, and this is why
Order can matter here. Partial ratio similarity score: 100

Simple ratio similarity score: 86

But order will not effect simple ratio if strings do not match
print(f"Simple ratio similarity score: {fuzz.ratio(name, full name)}")

SIMPLE RATIO

measures the similarity between two
strings by computing the edit distance.
It simply calculates how many edits
(insertions, deletions, substitutions) are
required to make one string the other.

Implementation and Results

Chatbot
Development

We developed the chatbot using the Flask
fraomework. The chatbot uses a JSON file to
store intents and responses. User queries are
processed by normalizing the text (lowercasing
and removing punctuation) and using fuzzy
matching to find the best matching intent.

Importing flask module in the project is mandatory
An object of Flask class 1s our WSGI application.
from flask import Flask
Flask constructor takes the name of
current module (_ name) as argument.
app = Flask(_ name)
The route() function of the Flask class 1s a decorator,
which tells the application which URL should call
the associated function.
@app.route(’/")
/7 URL is bound with hello world() function.
det hello world():
return 'Hello World’
main driver function
if name == " maln_":
run() method of Flask class runs the application
on the local development server.

app. run

i
T+
i
1

H B X

Example code for the Flask application

Implementation and Results

Fuzzy Matching
Implementation

The find_match_token_set_ratio method in the
Chatbot class uses fuzzy matching to compare
user inputs with predefined patterns in the
Intents. This allows the chatbot to understand
and respond to queries even when they are not
phrased exactly as expected

def preprocess text(self, text):
Normalize text by converting to lowercase and removing punctuation

def

text = text.lower()
text = re.sub(r’'[~\w\s]", "7, text)
return text
find match token set ratio(self, user input, threshold=75):
user_input = self.preprocess text(user input)
best match = ©
match = None
for intent in self.intents:
for pattern in intent]['patterns’]:
pattern = self.preprocess text(pattern)
similarity = fuzz.token_set ratio(user_input, pattern)
if similarity »= threshold and similarity > hest_match:l
best match = similarity
match = intent["tag’]
return match

Example code for preprocessing text and

finding the best match

Implementation and Results

Accessibility Features

We implemented several accessibility features

High-Contrast Mode: Voice Interaction: Large Text:
Provides better Allows users to input Increases the font
visibility for users with queries and receive size for better
visual impairments. spoken responses using readability.

the Web Speech API.

Summary

The goal of creating a chatbot with enhanced natural
language understanding and accessibility

features was successfully achieved. The fuzzy matching
algorithm significantly improved the

chatbot's ability to understand varied user inputs. The
accessibility features made the chatbot

more user-friendly for visually impaired users. Future
improvements could include expanding

the range of intents and responses and integrating a
database for more complex data handling.

References

- Jurafsky, D., & Martin, J. H. (2008). Speech and Language Processing.
- Manning, C. D., & Schutze, H. (1999). Foundations of Statistical Natural Language

Processing.
- Grinberg, M. (2018). Flask Web Development: Developing Web Applications with

Python.

- Duckett, J. (2014). HTML and CSS: Design and Build Websites.

- Flanagan, D. (201). JavaScript: The Definitive Guide.

- W3C. (2018). Web Content Accessibility Guidelines (WCAG) 2.1.

- W3C. (2014). Web Speech API Specification.

- Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to

Algorithms.
- Bray, T. (2014). The JavaScript Object Notation (JSON) Data Interchange Format.

- Silberschatz, A., Korth, H. F., & Sudarshan, S. (2010). Database System Concepts.
- "Fuzzy String Matching in Python" - DataCamp. Available at:
\url{https://www.datacamp.com/tutorial/fuzzy-string-python}

Thank you for your attention

