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1. Abstract

Detecting sarcasm in text is a complex and nuanced challenge in natural language
processing, crucial for improving sentiment analysis and enhancing human-computer
interaction. In this project we have used several machine learning and deep-learning models
for sarcasm detection, including supervised learning algorithms (logistic regression and
gradient boosting), neural network models (Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU)), and transformer-based models (RoBERTa from Hugging Face).

First, we introduce the aim, scope, and methodology of our project. Next, we provide a
theoretical overview of the principles and advantages of each model type, explaining their
pertinency to sarcasm detection.

In the practical part, we document the data sourcing from Kaggle, followed by extensive
preprocessing and exploratory data analysis (EDA). We describe how the data was prepared
for modeling. Right after we detail the implementation phase, showcasing code snippets and
graphical analysis used in our approach.

Finally, we present a comparative analysis of the model’s performance, and we discuss the
most effective model for sarcasm detection.

Our project concludes with a summary discussing whether the project goals were achieved,
reflecting on the results, and offering subjective thoughts on the process and potential future
directions. Through this study, we demonstrate the potential of advanced NLP techniques in
improving the detection and understanding of sarcastic content in text.
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2. Introduction

a. Aim

The primary aim of this project is to develop and evaluate various machine learning
and deep-learning models for detecting sarcasm in text. Achieving the goal to identify
sarcastic expression, we can improve the performance of systems involved in
sentiment analysis, social media monitoring, and human-computer interaction.

b. Scope

In this project we have covered several keys areas:
—> Data collection: Utilizing a well-known dataset for sarcasm detection sourced
from Kaggle. [1]
— Data Preprocessing: Loading data and performing exploratory data analysis
(EDA). Implementing steps to clean and prepare the data for analysis.
— Model Implementation: Developing and training 3 different types of models for
sarcasm detection.
= Supervised learning algorithms: logistic regression and gradient
boosting.
= Neural network models: Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU).
= Transformer-based models: RoBERTa from Hugging Face.
— Model Evaluation: Providing a detailed analysis of the results, discussing the
strengths and limitations of each model. Comparing the performance of these
models to determine which is most effective in detecting sarcasm.

c. Methodology

The methodology for this project involves several steps and tools, which were
implemented using Python in Jupyter Notebook and Google colab environments. Let’s
detail the process:
— Data sourcing and Preparation
= Dataset: We used a well-suited dataset from Kaggle.
= Libraries and tools: For manipulating data we used Pandas library and
for visualizing data we used Seaborn and WordCloud libraries
= We used NLTK for NLP tasks, including stopwords removal and
tokenization
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=  We used TfidVectorizer from Scikit-learn for feature extraction.

— Model development and Training

= Supervised Learning: We implemented logistic Regression gnd gradient
boosting model using Scikit-learn, with a pipeline for TF-IDF
vectorization and model training.

= Neural Network: We have build LSTM and GRU Models using
TensorFlow and Keras. These models were structured with an
embedding layer, LSTM or GRU layers, dropout for regularization, and
dense layers for output.

= Transformer-based Models: Leveraging Hugging Face’s Transformers

library, we used the AutoTokenizer and
AutoModelForSequenceClassification for implementing the RoBERTa
model.

= Metrics such as accuracy, precision, recall, F1-score, and confusion
matrix were used to evaluate model performance. To ensure model
robstness and prevent overfitting we employed cross_val_score from
Scikit-learn.

This thorough approach, using various Python libraries and tools, enabled us to effectively
test and compare different models for sarcasm detection.
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3. Theoretical part

In our project, we employed three different types of machine learning models to achieve our
objectives.

a. Supervised learning algorithms

Logistic regression

Logistic regression is a supervised machine learning algorithm utilized for binary classification
tasks, predicting the probability of an outcome, event, or observation.[3]

Advantages for Sarcasm Detection:

e Simplicity and Interpretability: Logistic regression is straightforward to implement
and interpret, making it easy to understand the relationship between features (e.g.,
text features like word counts or sentiment scores) and the prediction of sarcasm.

e Low Computational Cost: This method requires less computational power compared
to more complex models, allowing for faster training and evaluation.

e Baseline Performance: While simple, logistic regression can serve as a strong baseline
to compare more advanced models against, providing insights into the effectiveness
of feature engineering.

Gradient Boosting

Gradient boosting machines are a versatile and powerful family of machine learning
techniques that excel in a wide range of practical applications. Their ability to be tailored to
specific loss functions and incorporate regularization mechanisms ensures high predictive
accuracy and robustness. [2]

Advantages for Sarcasm Detection:

e High Predictive Accuracy: Gradient Boosting often achieves high accuracy by
combining the strengths of multiple weak learners (decision trees) into a strong
predictive model. This is particularly beneficial for capturing the complex patterns
associated with sarcasm.
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Handling Non-Linearity: Sarcasm often involves non-linear relationships between
words and phrases. Gradient Boosting can model these complex interactions more
effectively than linear models like logistic regression.

Feature Importance: It provides insights into the importance of different features used
in the model. This can help in understanding which words or phrases are most
indicative of sarcasm.

Robustness to Overfitting: Gradient Boosting includes regularization techniques (such
as limiting tree depth and learning rate) to prevent overfitting, which is crucial for
handling the variability in sarcastic expressions.

Flexibility with Different Types of Data: Gradient Boosting can handle various types of
input features, including numerical, categorical, and text features transformed
through techniques like TF-IDF or word embeddings, making it versatile for sarcasm
detection tasks.
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b. Neural network models

LSTM (Long Short-Term Memory)

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) designed to
model temporal sequences and their long-range dependencies more accurately than
conventional RNNs.[4]

Advantages for Sarcasm Detection:

Handling Long-Term Dependencies: LSTMs can capture long-term dependencies and
context in text, which is crucial for understanding the nuanced patterns in sarcastic
remarks.

Sequential Data Processing: They are well-suited for processing sequences of words
or sentences, maintaining context over longer text sequences.

Flexibility with Various Sequence Lengths: LSTMs can handle varying lengths of text
input, making them versatile for different sarcastic expressions.

GRU (Gated Recurrent Unit)

Gated Recurrent Unit (GRU) is another type of recurrent neural network that is similar to LSTM
but with a simpler architecture.[5]

Advantages for Sarcasm Detection:

Efficiency: GRUs are computationally more efficient and faster to train than LSTMs,
while still effectively capturing dependencies in sequential data.

Effective Sequence Modeling: Despite their simpler structure, GRUs are capable of
handling sequence data well, making them suitable for detecting sarcasm in context
where temporal dependencies matter.

Reduced Complexity: The simpler architecture of GRUs makes them less prone to
overfitting and easier to tune.
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c. Transformer-based models

RoBERTa (Robustly optimized BERT approach)

RoBERTa is a transformer-based model developed by Facebook Al and available through
Hugging Face. It is an optimized version of BERT (Bidirectional Encoder Representations from
Transformers) that enhances performance through extensive pre-training and fine-tuning.[6]

Advantages for Sarcasm Detection:

e Contextual Understanding: RoBERTa excels at understanding context and nuances in
text, which is critical for accurately detecting sarcasm, often conveyed through subtle
linguistic cues.

e Pre-trained on Extensive Data: Being pre-trained on a large corpus of text data,
RoBERTa has a strong grasp of language patterns and can be fine-tuned for specific
sarcasm detection tasks, improving its performance.

e State-of-the-Art Performance: RoBERTa often achieves state-of-the-art results in
various NLP tasks, including sarcasm detection, by leveraging its deep and robust
language understanding capabilities.

e Scalability and Robustness: The model scales well with more data and larger
architectures, making it highly effective for complex sarcasm detection tasks that
require nuanced interpretation.
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4. Practical Part

a. Data collection

For our sarcasm detection project, we chose to use a well-known and widely utilized dataset
from Kaggle. Kaggle is a popular platform for data science competitions and hosting datasets.

(1]

The dataset, published by Dan Ofer in 2018, contains 1.3 million sarcastic statements and is
balanced.

The sarcasm detection dataset we used contains diverse and context-rich examples of
sarcasm, which is crucial for training models capable of understanding and detecting sarcasm
in text.

We chose to use a CSV (Comma-Separated Values) file to store and manipulate the data. The
CSV format has several advantages: simplicity, readability, compatibility and ease of
Manipulation.



b ‘ Cracow University of Technology

Department of Computer Sciences

b. Data Preprocessing

— Importing librairies

To begin our sarcasm detection project, we first loaded and analyzed the dataset to
understand its structure and content. We started by importing the necessary libraries for data
manipulation, visualization, and machine learning.

import numpy as np

import pandas as pd

import seaborn as sns

impert matplotlib.pyplet as plt

from wordcloud import WordCloud

from collections import Counter

import re

import nltk

from nltk.corpus import stopwords

from sklearn.feature extraction.text import TfidfVectorizer

from os import path

sns.set()

from sklearn.model selection import train test split

impert matplotlib.pyplet as plt

from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.linear model import LogisticRegression

from sklearn.pipeline import Pipeline

from sklearn.metrics import classification report

from sklearn.metrics import accuracy score, confusion matrix, recall score, precision score, fl score
impert datetime as dt

from sklearn.model selection import cross val score

from sklearn.model selection import GridSearchCv

impert calendar

from sklearn.metrics.pairwise import cosine similarity
zmatplotlib inline

import time

— Loading data and dropping the null comments

We loaded the dataset and then we removed any rows where the 'comment’ field is null to
ensure that we only work with complete data.

#dropping the null comments
data.dropna(subset=['comment'],inplace=True)

— Clean text

We defined a function to clean the text by removing digits, punctuation, and converting the
text to lowercase. Removing digits and punctuation helps in reducing noise in the data, which
can improve the performance of natural language processing (NLP) tasks.

Then we converted the timestamp into a DateTime object for easier manipulation. The
purpose of this code is to preprocess and clean the text data in the DataFrame, making it more
suitable for further analysis or modeling.
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# Clean text
def clean text(comment):
#removing digits
comment = re.sub(r'\d+', "', comment)
#removing punctuations
comment = re.sub(r'[™w\s]', '', comment)
#converting to lowercase
comment = comment.lower()
return comment

data['cleaned text'] = data['comment'].apply(clean text)

— Converting the timestamp into DateTime object

Converting the created_utc column to DateTime objects ensures that date and time data is in
a format suitable for complex temporal operations, which is crucial for accurate and efficient
analysis involving time-based data.

# Converting the timestamp intoc DateTime object
data.created utc = pd.to datetime(data.created utc)

.info() and .describe() methods are used to get a summary of the dataset.

— Dataset Class Distribution

Then we explored the data. The figure below demonstrates that the dataset is balanced, with
an equal proportion of sarcastic and non-sarcastic comments. Specifically, both categories
represent 50% of the total dataset. This balance is crucial for ensuring unbiased analysis and

accurate model training, as it prevents any one class from disproportionately influencing the
results.

500000
400000
300000
200000

100000

label

Then we remove stop words from the cleaned text to focus on the more meaningful words.

nltk.download('stopwords")

# Remove stop words
stop_words = set(stopwords.words(’'english’))

datal'cleansd text'] = datal'cleaned text'].apply(lambda x: ' '.join([word for word in x.split() if word not in stop
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— Relation between the lenght of the comment and the comment being

sarcastic

The figures below show that non-sarcastic comments tend to be shorter on average compared
to sarcastic comments. The differing distributions of comment lengths between sarcastic and
non-sarcastic comments may reflect distinct patterns in language usage and communication

styles within the dataset.
Length of Non-Sarcastic Comments

Length of Sarcastic Comments

TR QD @@oo oD 00 a o0 0O 00

0 2000 4000 6000 8000 10000
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— The Word Cloud

To further understand the differences between sarcastic and non-sarcastic comments, we can
visualize the most common words used in each category by generating word clouds

Sarcastic Comments
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racist

great : g aIW

will dob\/lougly
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nothing
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Non-Sarcastic Comments
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— Analyzing Top Authors and Their Sarcasm Levels

Then we wanted to identify the top 10 authors who have contributed the most comments in
the dataset. We accomplished this by counting the occurrences of each author's name in the
'author' column and selecting the top 10 based on frequency. Subsequently, we computed the
average sarcasm level for each of these top authors by filtering the dataset to include only
comments from these authors and then calculating the mean label value for each author
group.

top_authors = datal'author'].value_counts().head(10)

top_authors_sarcasm = dataldatal'author'].isin(top_authors.index)].groupby('author')['label'].mean()
top_authors_sarcasm.plot(kind="bar"')
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— Examining Top Subreddits and Sarcasm Levels
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Finally, we can visualize the sarcasm levels of these top authors using a bar plot. This
visualization provides valuable insights into which authors tend to exhibit higher or lower
levels of sarcasm in their comments, thus offering a glimpse into the sarcasm distribution
among the most active contributors in the dataset.
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top_subreddits = datal'subreddit'].value_counts{).head(10)
top_subreddits_sarcasm = dataldatal'subreddit'].isin(top_subreddits.index)].groupby('subreddit')['label’].mean()
top_subreddits_sarcasm.plot(kind="bar")

<Axes: xlabel='"subreddit'>
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— Analyzing Average Score by Sarcasm Label

According to the dataset, sarcastic comments tend to be less popular due to having lower
overall scores. We have grouped the dataset by the sarcasm label ('label' column), and the
mean score for each group is calculated. The 'score' column likely represents a numerical value
associated with the engagement or popularity of each comment, such as the number of
upvotes or likes it received.

data.groupby('label')['score’].mean().plot(kind="bar’', title="Average Score by Sarcasm Label')

By computing the average score for both sarcastic and non-sarcastic comments separately,
this analysis aims to compare the engagement levels between these two categories. The
resulting bar plot visualizes the average score for sarcastic and non-sarcastic comments,
providing insights into whether sarcastic comments tend to receive more, or fewer votes
compared to non-sarcastic ones. This analysis helps in understanding the relationship
between sarcasm and audience engagement within the dataset.

Average Score by Sarcasm Label
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— Analyzing Monthly Sarcasm Rate

After that, the 'date' column in the dataset is converted to a datetime format using the
pd.to_datetime() function, enabling temporal analysis. Subsequently, the DataFrame is
indexed by the 'date' column, and then resampled at a monthly frequency using
resample('M’).

datal'date'] = pd.to datetime(datal 'date'])
data.set_index('date’).resample('ME'}['label’].mean().plot(title="Monthly Sarcasm Rate')

This resampling aggregates the data into monthly intervals and calculates the mean sarcasm
rate for each month. The resulting line plot visualizes the monthly sarcasm rate over time,
allowing for the observation of trends or patterns in sarcasm usage within the dataset. This
analysis provides insights into how sarcasm varies over different periods, potentially revealing
seasonal or temporal trends in sarcastic communication.

Monthly Sarcasm Rate
0.70

0.65
0.60
0.55
0.50
0.45

0.40
2009 2010 2011 2012 2013 2014 2015 2016
date

Consequently, the frequency of sarcasm is on the decline.

— Analyse the subreddits

The analysis of subreddits focuses on understanding the distribution and prevalence of
sarcastic comments across different subreddits. This helps us identify which subreddits have
the highest number of sarcastic comments, and which subreddits have the highest proportion
of sarcastic comments relative to the total number of comments in that subreddit.
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# Identify the top 3 popular subreddits
top_subreddits = datal'subreddit'].value counts().head(3).index.tolist()

# Filter the dataset to include only comments from the top subreddits
top_subreddits_data = dataldatal'subreddit']l.isin(top_subreddits)]

# Calculate the count of sarcastic and non-sarcastic comments for each subreddit
subreddit_counts = top subreddits data.groupby(['subreddit', °label']l).size().unstack(fill_value=0)

This bar plot shows the count of sarcastic and non-sarcastic comments for the top 3 subreddits
with the highest total number of comments. The stacked bars make it easy to compare the
relative number of sarcastic and non-sarcastic comments within each subreddit.

Count of Sarcastic and Non-Sarcastic Comments for Top 3 Subreddits
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For example we can see that the subject of politics is mostly use with sarcasm.

— Distribution of Sarcastic Comment Lengths vs. Parent Comment Lengths

The boxplot visualization below provides insights into the distribution of comment lengths for
sarcastic comments compared to their parent comments.

The mean length of sarcastic comments is approximately 56.45 characters and for the parent
comments it is approximately 133.17 characters.

# Filter sarcastic comments and their corresponding parent comments
sarcastic_data = dataldatal'label’] == 1].copy()

# Calculate length of sarcastic comments and parent comments

sarcastic_data.loc[:, 'comment length'] = sarcastic_datal'comment'].apply(len)
print(sarcastic data.loc[:, 'comment length'l.mean())

sarcastic_data.loc[:, 'parent comment length'] = sarcastic_datal'parent comment'].apply(len)
print(sarcastic data.loc[:, 'parent comment length'].mean())

# Set up the figure and axis
plt.figure(figsize=(108, 6))

# Create a boxplot for comment lengths and parent comment lengths
sns.boxplot(data=[sarcastic_datal’'comment_length'], sarcastic_datal'parent_comment length']],
width=0.5, palette="Set3")
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— Sarcasm threw the years

Our last graphic shows that the more the time goes the more we are sarcastic.

Count of sarcastic comments per year
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— Modelling

Finally, we ensure that the model focuses on relevant features, potentially improving the
performance and interpretability of the sarcasm detection model by removing unnecessary
columns.
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data_new = data.drop(["author', 'ups', ‘'downs', "date', 'created utc', 'Year'l, axis=1)

data new.info()

<class 'pandas.core.frame.DataFrame’'s>
Index: 1010771 entries, @ to 1010825
Data columns (total 6 columns):

#  Column Non-Null Count Dtype
B  label 1818771 non-null int64
1 comment 1818771 non-null object
2  subreddit 1818771 non-null object
3 score 1818771 non-null int64
4  parent_comment 1618771 non-null object
5 cleaned_text 1816771 non-null object

dtypes: int64(2), object(4)
memory usage: 54.0+ MB
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c. Model Implementation

To implement and evaluate our machine learning models for sarcasm detection, we employed
a combination of diverse techniques and libraries.

— Logistic Regression

To implement this model, we have used TF-IDF vectorization. It is instantiated with specified
parameters such as ‘ngram_range’, ‘max_features’, and ‘min_df’, which define the range of
n-grams to consider, the max number of features to extract, and the min document frequency
respectively. In the other hand, the model is instantiated with parameters such as ‘c’, ‘n_jobs’,
‘solver’, ‘random_state’, ‘verbose’, and ‘max_iter’, which control regularization strength,
parallel processing, optimization solver, random seed, verbosity level, and maximum number
of iterations respectively.

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

# Define the TF-IDF vectorizer and logistic regression model
tf_idf = Tfidfvectorizer(ngram_range=(1, 2), max_features=50000, min_df=2)

logit = LogisticRegression(C=1, n_jobs=4, solver='lbfgs', random_state=17, verbose=8, max_it
# Create a pipeline that combines the vectorizer and the model

#tfidf_logit pipeline = Pipeline([('tf_idf', tf_idf), ('logit', logit)])

#This pipeline first transforms the text data using TF-IDF and then applies the logistic reg
from sklearn.pipeline import make pipeline

tfidf_logit_pipeline = make_pipeline(tf_idf, StandardScaler(with_mean=False), logit)

# Split the data into training and testing sets

X train, X test, y train, y test = train test split(data newl['comment'], data new['label'],

#25% of the data is used for testing, 75% for training

# Train the pipeline on the training data

tfidf logit pipeline.fit(X train, y train)

#The TF-IDF vectorizer transforms the text data, and the logistic regression model is traine
# Make predictions on the test set

valid pred = tfidf logit pipeline.predict(X test)

#Prints a report with various classification metrics (precision, recall, Fl-score)

# Evaluate the model
print(classification report(y test, valid pred))

The ‘classification_report’ function is used to print a report with various classification metrics
such as precision, recall, and F1-score, comparing the predicted labels against the actual labels
in the test set.

Next, we evaluate the model using Cross-Validation. We took the pipeline
(tfidf_logit_pipeline),  input  features (data_new['comment']), target variable
(data_new['label']), number of folds (cv=5), and scoring metric (scoring='accuracy') as
parameters.

from sklearn.model selection import cross_val score

# Perform cross-validation on the pipeline
cv_scores = cross val score(tfidf logit pipeline, data new[ ' comment'], data new['label'], ¢

# Print the average accuracy and standard deviation
print(f"Cross-Validation Accuracy: {cv_scores.mean():.2f} + {cv_scores.std():.2f}")

Cross-Validation Accuracy: 8.71 + 0.00
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— Gradient Boosting

from sklearn.ensemble impert GradientBoostingClassifier

from sklearn.pipeline impert make pipeline

from sklearn.preprocessing impert StandardScaler

# Define the TF-IDF vectorizer and SVM model

tf_idf = TfidfVectorizer(ngram_range=(1, 2), max_features=50000, min_df=2)
gb_model = GradientBoostingClassifier(random_state=42)

tfidf_gb_pipeline = make pipeline(tf_idf, StandardScaler(with_mean=False), logit)

# Make predictions on the test set
valid pred = tfidf logit_pipeline.predict(X_test)

# Evaluate the model
print(classification_report(y_test, valid pred))

# Perform cross-validation on the pipeline
cv_scores = cross_val_score(tfidf_gb_pipeline, data_newl'comment'], data_new['label'l, cv=5, scoring='accuracy')

# Print the average accuracy and standard deviation
print(f"Cross-Validation Accuracy: {cv_scores.mean()}:.2f} = {cv_scores.std():.2f}")

As we can see we used the same technique for implementing the Gradient Boosting model.

—SVM

We tried to implement the linear SVM code, but the data was too heavy even with sample, so
it didn't work.

from sklearn.svm import SVC
from sklearn.pipeline import make pipeline

# Define the TF-IDF vectorizer and SVM model
tf_idf = TfidfVectorizer(ngram_range=(1, 2), max_features=10000, min_df=2)
svm = SVC(C=1, kernel='linear', probability=True, random state=17)

# Create a pipeline that combines the wvectorizer and the model
tfidf svm_pipeline = make pipeline(tf_idf, StandardScaler(with _mean=False), svm)

# Split the data into training and testing sets
X _train, X test, y train, y test = train_test split(data_new['comment'], data_new['label'], te

# Train the pipeline on the training data
tfidf_svm_pipeline.fit(X train, y train)

# Make predictions on the test set
valid pred = tfidf_svm pipeline.predict(X test)

# Evaluate the model
print(classification report(y test, valid pred))

# Perform cross-validation on the pipeline
cv_scores = cross_val_score(tfidf_svm_pipeline, data new['comment'], data new['label'], cv=5,

# Print the average accuracy and standard deviation
print(f"Cross-Validation Accuracy: {cv_scores.mean():.2f} = {cv_scores.std():.2f}")
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— GRU and LSTM

Because of RAM issues we chosed to sample the data for this models.

To leverage the computational power of GPUs, we configure TensorFlow to recognize and
utilize GPU resources. By calling tf.config.list_physical devices('GPU'), we ensure that
TensorFlow is aware of available GPU devices, which can significantly accelerate training and
processing times for our models.

import tensorflow as tf
tf.config.list physical devices('GPU')

The text is split into individual words or tokens. This helps in analyzing the text on a word-by-
word basis. Then we converted words to their base forms. This reduces the variability in the
text and helps in focusing on the core meaning of the words.

import string
import nltk
nltk.download( ' punkt')
nltk.download( 'wordnet"')
from nltk.tokenize import word tokenize
from nlik.stem import WordNetlLemmatizer
def preprocess text(text):
tokens = nltk.word tokenize(text) # Tokenization

lemmatizer = WordNetLemmatizer()
tokens = [lemmatizer.lemmatize(t) for t in tokens] # Lemmatization
return " ".join(tokens)

data sample['comment'] = data sample['comment'].apply(preprocess text)

We tokenize the text into sequences of integers and pad them to ensure all sequences have
the same length. The padding ensures all sequences are of the same length by adding zeros to
shorter sequences. This is crucial for batch processing in neural networks.
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# Tokenization

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences
tokenizer = Tokenizer(num words=20008)

tokenizer.fit on texts(data sample['comment'].values)

tokens = tokenizer.texts to sequences(data sample['comment'].values)
X = pad _sequences(tokens, maxlen=180) # Pad sequences to ensure uniform length

numTokens = [len(token) for token in tokens]
numTokens = np.array({numTokens)
print({"Tokens'mean",np.mean(numTokens))
print({"Max", np.max(numTokens))
print("Argmax", np.argmax(numTokens))

Tokens'mean 11.3104
Max 1665
Argmax 1332
We

define a Sequential model using TensorFlow Keras, which includes an embedding layer, GRU
layer or LSTM layer , and a dense output layer.

— Embedding Layer: Converts words into dense vectors of fixed size, capturing
the semantic meaning of words.
— GRU Layer or LSTM Layer: Captures temporal dependencies and patterns in the
data. The dropout parameters help prevent overfitting.
— Dense Layer: A single neuron with sigmoid activation function to output a
probability for binary classification.
—————————————————— summary of the built modelGRU--------------

—————————————————— Summary of the built modelLSTM-------------- Model: "sequential"”
Model: "sequential 1"

Layer (type) Output Shape Param #
Layer (type) Output Shape Param #

embedding (Embedding) (None, 200, 128) 2560000
embedding_1 (Embedding) (None, 200, 128) 2560080

spatial dropoutld (Spatial (None, 200, 128) [¢]
spatial dropoutld 1 (Spati (None, 20@, 128) 0 Dropout1D)
alDropoutlD)

gru (GRU) (None, 180) 69000
lstm (LSTM) (None, 108@) 91600

dense (Dense) (None, 1) 101
dense_1 (Dense) (None, 1) 101

Total params: 2629101 (10.03 MB)
Trainable params: 2629101 (10.83 MB)
Non-trainable params: 0 (0.00 Byte)

Total params: 2651701 (10.12 MB)
Trainable params: 2651761 (10.12 MB)
Non-trainable params: 0 (0.00 Byte)

None
None

We train the model on the training set and validate it using a small portion of the training data
(validation split of 0.1).
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) # Train the model
history = model GRU.fit(X train, y train, epochs=5, batch size=64, validation split=0.1, verbose=1)

~ Epoch 1/5

57/57 [ ] - 555 873ms/step - loss: 0.6875 - accuracy: 0.5250 - val_loss: 0.6767 - val_accuracy: 0.5875
Epoch 2/5
57/57 [ 1 - 35s 613ms/step - loss: 0.6088 - accuracy: @.6922 - val_loss: 8.6712 - val_accuracy: 0.5725
Epoch 3/5
55/57 [ 1 - 32s 562ms/step - loss: 0.4825 - accuracy: @.8311 - val_loss: 8.7546 - val_accuracy: 0.5750
Epoch 4/5
57/57 [ 1 - 34s 608ms/step - loss: 0.2161 - accuracy: 0.9181 - val loss: ©.9824 - val accuracy: 0.5525
Epoch 5/5
57/57 [ 1 - 32s 56@ms/step - loss: 0.1205 - accuracy: 0.9556 - val_loss: 1.1858 - val_accuracy: 0.5500
™ i@ e mwuct

history = model LSTM.fit(X train, y_train, epochs=5, batch size=64, validation_split=6.1, verbose=1)

Epoch 1/5
57/57
Epoch 2/5
57/57
Epoch 3/5
57/57
Epoch 4/5
57/57
Epoch 5/5

57/57 [ 1 - 365 632ms/step - loss: 0.1549 - accuracy: 0.9458 - val loss: ©.9571 - val accuracy: 8.6000

69s 1s/step - loss: 0.6878 - accuracy: ©.5336 - val loss: 0.6778 - val accuracy: 0.5725

36s 618ms/step - loss: @.6173 - accuracy: 0.6894 - val loss: ©.6407 - val accuracy: 0.6250

1 - 355 621ms/step - loss: 0.4374 - accuracy: 0.8047 - val loss: ©.6815 - val accuracy: 8.6325

355 617ms/step - loss: ©.2647 - accuracy: 0.8917 - val_loss: ©.7851 - val accuracy: 0.6325
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— RoBERTa Model

The RoBERTa tokenizer and pre-trained model for sarcasm detection are loaded using the
AutoTokenizer.from_pretrained and AutoModelForSequenceClassification.from_pretrained
functions respectively.

The predict_sarcasm function takes input text, preprocesses it, tokenizes it using the
tokenizer, and passes it through the pre-trained RoBERTa model. It then calculates the
sarcasm score based on the model's output probabilities.

A Tkinter GUIl application named SarcasmDetectorApp is defined, which consists of a text entry
field for input, a button to trigger the sarcasm detection, and a label to display the sarcasm
score.

The detect_sarcasm method of the SarcasmDetectorApp class retrieves the input text from
the text entry field, calls the predict_sarcasm function to get the sarcasm score, and updates
the result label with the obtained score.

A Tkinter window is created, and the SarcasmDetectorApp instance is initialized, followed by
the event loop (mainloop()) to start the GUI application.

# Tkinter Application
class SarcasmDetectorApp:
def init (self, master):
self.master = master
master.title("Sarcasm Detector")

self.label = tk.Labeli(master, text="Enter text:")
self.label.pack()

self.text_entry = tk.Text(master, height=5, width=58)
self.text _entry.pack()

self.detect button = tk.Button(master, text="Detect Sarcasm”, command=self.detect_sai
self.detect button.pack()

self.result_label = tk.Label(master, text="")
self.result label.pack()

def detect sarcasm(self):
input_text = self.text entry.get("1.8", tk.END)
sarcasm score = predict sarcasm(input text)
self.result_label.config(text=f"Sarcasm score: {sarcasm_score}")

# Create Tkinter window

root = tk.Tk()

app = SarcasmDetectorApp(root)
root.mainloop()
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d. Model Evaluation

— Logistic Regression and Gradient Boosting

The classification report for the two models reveals an overall accuracy of 71% on the test set,
with precision scores of 70% for non-sarcastic (class 0) and 72% for sarcastic (class 1)
comments.

The recall scores indicate that the model correctly identifies 74% of non-sarcastic comments
and 68% of sarcastic comments. The F1-score, which balances precision and recall, is 0.72 for
non-sarcastic comments and 0.70 for sarcastic comments.

These results suggest that the two models model performs reasonably well in distinguishing
between sarcastic and non-sarcastic comments. However, the exploration of additional
techniques may enhance its performance in sarcasm detection. Even if the model is consistent
and robust with no variability across the 5 folds as we have seen the results by doing Cross-
Validation, the model is still not the best model for our project.

precision recall fl-score  support

2] B.78 0.74 8.72 126226

1 B.72 0.68 8.7 126467
accuracy 8.71 252693
macro avg B8.71 8.71 8.71 252693

weighted avg B.71 8.71 8.71 252693
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— GRU and LSTM

From the training history of the LSTM and GRU model, we observe that the training loss and
accuracy generally improve with each epoch, indicating that those models are learning from
the data. However, the validation loss and accuracy fluctuate and show signs of degradation
in later epochs, suggesting potential overfitting. This means those models perform well on the
training data but struggle to generalize to unseen data, which is a common challenge in
machine learning and deep learning.

Upon evaluation on the test set, the models achieved an accuracy of around 62/61%,
indicating their ability to correctly classify sarcastic and non-sarcastic comments. However,
further analysis revealed a balanced but modest precision, recall, and Fl-score for both
classes, suggesting the need for improvements in distinguishing between the two classes

------------------ Classifiction report model LTSM--------------

precision recall fl-score  support
0 0.62 0.58 0.60 503
1 0.60 0.64 0.62 497
accuracy 8.61 1680
macro avg 0.61 0.61 0.61 1000
weighted avqg 0.61 0.61 8.61 1000
[[293 210]
[178 319]]
e Classifiction repnr% nodel GRU--------------
precision recall fT1l-score  support
0.61 0.62 B.62 5083
1 0.61 .60 0.60 497
accuracy 0.61 1000
macro avg 0.61 6.61 0.61 1000
weighted avg 0.61 0.61 0.61 1000
[[314 189]
[200 297]]

The confusion matrix highlighted the model's struggle in correctly classifying instances, with a
considerable number of false positives and false negatives. This indicates areas for
improvement, possibly through feature engineering or model architecture adjustments.

In conclusion, while those models show promise in detecting sarcasm, their performance
could be further enhanced to improve accuracy and robustness in real-world scenarios.
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— RoBERTa Model

In this model we have set up a GUI application using Tkinter to allow users to input text and
detect sarcasm. The interface is presented below. We can write our message and then we

have as result the sarcasm score.

B P P e eamames — e e maaes e

pe—— i

Sarcasm Detector — O x

Enter text:

Hello World |

Detect Sarcasm

Sarcasm score: 0.0002

B P P e eamames — e e maaes e

Sarcasm Detector — O x

pe—— i

Enter text:
Ha ha jha you're so funny

Detect Sarcasm

Sarcasm score: 99,9999
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5.Summary

In conclusion, this project enabled us to apply the knowledge we had acquired
throughout the semester by developing a project to detect sarcasm in text.

Through the exploration and implementation of our models, it becomes evident that the best
model to detect sarcasm in text is the RoBERTa Model.

While Logistic Regression and neural network models like LSTM and GRU were considered,
they posed significant challenges in terms of implementation complexity and computational
resource requirements. The execution time for these models was notably long and, in some
cases, even impractical, hindering their feasibility for large-scale sarcasm detection tasks.
Indeed, our code was taking too long to run due to the size of our dataset so one solution was
to randomly sample a smaller subset of our data to work with.

On the other hand, the RoBERTa model showed really good results when it came to detecting
sarcasm. It's built on a fancy type of technology called transformers and was trained
specifically to understand sarcasm better. This model did a great job at picking up on the
subtle meanings and tricky language tricks that often come with sarcasm. That's why it did
better than the other models we tried.
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