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1. Abstraction 

Semantic similarity. A metric defined over a set of documents or terms, where the idea of 

distance between items is based on the likeness of their meaning or semantic content. 

Identifying similar texts is a fundamental task in various fields such as Natural Language 

Processing (NLP), information retrieval, plagiarism detection, and sentiment analysis, among 

others. This technique is used to find pairs of texts that express similar ideas, even if they are 

not identical word for word. This report presents the development and evaluation of Siamese 

BERT model to identify the semantic similarity between pairs of texts from Quora dataset. 

 

2. Introduction 

2.1 Aim 

The aim of this project is to develop a tool capable of identify similarity between pair of texts. 

This tool is designed to help identify synthetically duplicate questions, which leads to improve 

the efficiency of questioning-answering systems and enhancing the user experience. 

 

2.2 Scope 

The scope of this project includes: 

⚫ Loading and preprocessing the question pairs dataset 

⚫ Performing data analysis to understand a characteristic of the given dataset 

⚫ Building a Siamese BERT model 

⚫ Training model for identifying text similarities 

 

2.3 Methodology 

⚫ Data loading and preprocessing: Reading the dataset, handling missing values, text 

cleaning for effective analysis 

⚫ Model building: Using Siamese BERT model, encoding text data for BERT input, 

and compiling the model. Using L1 distance layer to capture the non-linearities 

⚫ Model Evaluation: Using model to predict then view results through confusion 

matrix 

 

3. Theoretical Part 

3.1 Theoretical Foundations 

1. Text Preprocessing 



 

o Text Cleaning: The first step in text analysis is cleaning, which involves 

removing unwanted characters, normalizing text (e.g., converting to 

lowercase), and removing stopwords. This reduces noise and improves the 

quality of the analysis. 

o Tokenization: Divides the text into smaller units called tokens (words, 

phrases, etc.), facilitating analysis. 

o Lemmatization and Stemming: Reduces words to their root form or lemma, 

helping to treat different words with the same meaning. 

2. Text Representation 

o Bag of Words (BoW): Represents text as a collection of words, ignoring 

order but counting the frequency of each word. 

o TF-IDF (Term Frequency-Inverse Document Frequency): An 

improvement over BoW that weights words based on their frequency in a 

document and across the entire collection of documents. 

o Word Embeddings: Methods like Word2Vec, GloVe, and BERT represent 

words in vector spaces where words with similar meanings are closer together. 

3. Similarity Measures 

o Euclidean Distance: Measures the distance between two feature vectors in a 

multidimensional space. 

o Cosine Similarity: Measures the cosine of the angle between two vectors, 

useful for determining similarity in terms of direction. 

o Jaccard Similarity: Measures the similarity between two sets as the 

intersection divided by the union of the sets. 

4. Machine Learning Models 

o Supervised Models: Algorithms like Support Vector Machines (SVM), 

Random Forest, and neural networks trained with labeled data to predict 

similarity. 

o Unsupervised Models: Algorithms like K-means clustering that group similar 

texts without labeled data. 

5. Deep Learning Models 

o Transformers: Advanced models like BERT and GPT that capture the 

bidirectional context of words and are highly effective in NLP tasks. 

o Siamese Networks: Twin neural networks used to compute the similarity 

between pairs of texts by comparing their vector representations. 

3.2 Tools and Libraries 

1. NLTK (Natural Language Toolkit): Provides tools for text preprocessing, 

tokenization, lemmatization, and more. 

2. SpaCy: A fast and robust NLP library that includes functionalities for tokenization, 

lemmatization, part-of-speech tagging, and more. 

3. Transformers (Hugging Face): Offers pretrained models like BERT and GPT for 

advanced NLP tasks. 

4. TensorFlow and Keras: Deep learning libraries that allow building and training 

neural network models. 

  



 

4. Practical Part 

1. Loading and Preprocessing Data 

o Reading data from a CSV file. 

train_data = pd.read_csv("train.csv") 

 

train_data.head(10) 

 

o Cleaning and preprocessing text (removing unwanted characters, converting to 

lowercase, lemmatization). 

def text_cleaning(x): 

 

    questions = re.sub('\s+\n+', ' ', x) 

    questions = re.sub('[^a-zA-Z0-9]', ' ', questions) 

    questions = questions.lower() 

 

    return questions 

 

train_data['question1_cleaned'] = 

train_data['question1'].progress_apply(text_cleaning) 

train_data['question2_cleaned'] = 

train_data['question2'].progress_apply(text_cleaning) 

train_data 

 

 



 

2. Data Exploration 

o Analyzing the distribution of classes (similar vs. non-similar texts). 

pio.renderers.default = 'colab' 

 

fig = px.pie(train_data, values='id', names='is_duplicate', height=600, 

title='Proportion of Duplicate and Non Duplicate Questions') 

fig.show() 

 

o Visualizing the distributions of question lengths. 

## Compute ideal length of sentence 

train_data['question1_lens'] = 

train_data['question1_cleaned'].apply(lambda x: len(x.split())) 

train_data['question2_lens'] = 

train_data['question2_cleaned'].apply(lambda x: len(x.split())) 

 

train_data['question1_lens'].describe() 

train_data['question2_lens'].describe() 

 

# Calculate Q1 and Q3 for question lengths 

q1_q1 = train_data['question1_lens'].quantile(0.25) 

q3_q1 = train_data['question1_lens'].quantile(0.75) 

q1_q2 = train_data['question2_lens'].quantile(0.25) 

q3_q2 = train_data['question2_lens'].quantile(0.75) 

 

# Calculate upper outlier threshold for question lengths 

upper_outlier_q1 = q3_q1 + 1.5 * (q3_q1 - q1_q1) 

upper_outlier_q2 = q3_q2 + 1.5 * (q3_q2 - q1_q2) 

 

# Determine the maximum upper outlier threshold between the two 

max_upper_outlier = max(upper_outlier_q1, upper_outlier_q2) 

 



 

# Since max_upper_outlier is 22 we should take a number close to and 

higher than 22, so lets take ideal value as 50. 

ideal_len = 50 

results of train_data['question2_lens'].describe() 

3. Tokenization and Encoding 

o Using a tokenizer (such as BERT's) to convert text into sequences of tokens. 

o Ensuring all sequences have the same length through padding. 

model_checkpoint = 'bert-base-uncased' 

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) 

 

def encode_text(text, tokenizer): 

 

    encoded = tokenizer.batch_encode_plus( 

        text, 

        add_special_tokens=True, 

        max_length=50, 

        padding='max_length', 

        truncation=True, 

        return_attention_mask=True, 

        return_tensors="tf", 

    ) 

 

    input_ids = np.array(encoded["input_ids"], dtype="int32") 

    attention_masks = np.array(encoded["attention_mask"], 

dtype="int32") 

 

    return { 

        "input_ids": input_ids, 

        "attention_masks": attention_masks 

    } 

 

final_df['encoded_question1'] = 

final_df['question1_cleaned'].apply(lambda x: encode_text([x], 

tokenizer)) 

final_df['encoded_question2'] = 

final_df['question2_cleaned'].apply(lambda x: encode_text([x], 

tokenizer)) 



 

4. Building the Model 

o Using pretrained models like BERT to obtain vector representations of 

questions. 

o Constructing a neural network to compare these representations and predict if 

two questions are similar. 

class L1Dist(Layer): 

 

    def __init__(self,**kwargs): 

        super().__init__() 

 

    def call(self,embedding1,embedding2): 

        return tf.math.abs(embedding1 - embedding2) 

 

with strategy.scope(): 

    transformer_model = TFBertModel.from_pretrained(model_checkpoint) 

 

    input_ids_in1 = Input(shape=(None,),name='input_ids1', 

dtype='int32') 

    input_masks_in1 = Input(shape=(None,), name='attention_mask1', 

dtype='int32') 

    input_ids_in2 = Input(shape=(None,),name='input_ids2', 

dtype='int32') 

    input_masks_in2 = Input(shape=(None,), name='attention_mask2', 

dtype='int32') 

 

    embedding_layer1 = transformer_model(input_ids_in1, 

attention_mask=input_masks_in1).last_hidden_state 

    embedding_layer2 = transformer_model(input_ids_in2, 

attention_mask=input_masks_in2).last_hidden_state 

 

    embedding1 = GlobalAveragePooling1D()(embedding_layer1) 

    embedding2 = GlobalAveragePooling1D()(embedding_layer2) 

    l1_dist = L1Dist()(embedding1,embedding2) 

 

    x = Dense(512, activation='relu')(l1_dist) 

    output = Dense(1, activation='sigmoid')(x) 

 

    model = Model(inputs=[input_ids_in1, input_masks_in1, 

input_ids_in2, input_masks_in2], outputs = output) 

    model.compile(loss='binary_crossentropy',optimizer=tf.keras.optimiz

ers.Adam(learning_rate=0.00001),metrics='accuracy') 

 

model.summary() 

 



 

 

 

5. Training and Evaluating the Model 

o Splitting the data into training and test sets. 

o Training the model using techniques like early stopping and learning rate 

reduction. 

earlystopping = EarlyStopping(monitor='val_loss',min_delta = 0, 

patience = 5, verbose = 1, restore_best_weights=True) 

 

learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss', 

                                            patience=3, 

                                            verbose=1, 

                                            factor=0.3, 

                                            min_lr=0.00000001) 

 

# Reshape training input_ids and attention_masks 

X1_train_input_ids = np.squeeze(X1_train_input_ids, axis=1) 

X1_train_attention_masks = np.squeeze(X1_train_attention_masks, axis=1) 

X2_train_input_ids = np.squeeze(X2_train_input_ids, axis=1) 

X2_train_attention_masks = np.squeeze(X2_train_attention_masks, axis=1) 

 

# Reshape test input_ids and attention_masks 

X1_test_input_ids = np.squeeze(X1_test_input_ids, axis=1) 

X1_test_attention_masks = np.squeeze(X1_test_attention_masks, axis=1) 

X2_test_input_ids = np.squeeze(X2_test_input_ids, axis=1) 



 

X2_test_attention_masks = np.squeeze(X2_test_attention_masks, axis=1) 

 

# Train model 

history = model.fit((X1_train_input_ids, X1_train_attention_masks, 

X2_train_input_ids, X2_train_attention_masks), 

                    y_train, batch_size=BATCH_SIZE, epochs=5, 

                    validation_data=((X1_test_input_ids, 

X1_test_attention_masks, X2_test_input_ids, X2_test_attention_masks), 

y_test), 

                    callbacks=[earlystopping, learning_rate_reduction]) 

o Evaluating the model using metrics like the confusion matrix and 

classification report. 

y_pred = model.predict((X1_test_input_ids, 

                        X1_test_attention_masks, 

                        X2_test_input_ids,X2_test_attention_masks)) 

 

# Display confusion matrix to view results 

 

from sklearn.metrics import classification_report, confusion_matrix 

 

y_pred[y_pred>=0.5] = 1 

y_pred[y_pred<0.5] = 0 

 

sns.heatmap(confusion_matrix(y_test, 

y_pred),cmap='viridis',annot=True,fmt='.5g', 

            xticklabels=['Dissimilar','Similar'],yticklabels=['Dissimila

r','Similar']) 

plt.xlabel('Predicted Class') 

plt.ylabel('Actual Class') 

plt.show() 

 

 



 

# Print other evaluation metrics 

print(classification_report(y_test,y_pred)) 

 

 

5. Summary 

Identifying similar texts is a complex task involving multiple stages of processing and analysis. 

The techniques and tools described allow this task to be approached efficiently and accurately, 

using traditional methods as well as advanced deep learning models. The project can be 

developed by further optimizing the model and exploring additional datasets for broader 

applicability. The correct application of these methods can significantly improve applications 

in various domains such as information retrieval, online assistance, and more. 
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