Yy
PK

PROJECT REPORT

On

Similar Texts Identifying Tool

Course Title: Natural Language Processing

Submitted By:
Claudia Barbera
Haram EOM

Mohamed Hamas

Date of Submission: 10-06-2024

1. Abstract
2. Introduction

2.1 Aim

2.2 Scope

2.3 Methodology
3. Theoretical Part
4. Practical Part
5. Summary

6. Bibliography

Table of Contents

1. Abstraction

Semantic similarity. A metric defined over a set of documents or terms, where the idea of
distance between items is based on the likeness of their meaning or semantic content.
Identifying similar texts is a fundamental task in various fields such as Natural Language
Processing (NLP), information retrieval, plagiarism detection, and sentiment analysis, among
others. This technique is used to find pairs of texts that express similar ideas, even if they are
not identical word for word. This report presents the development and evaluation of Siamese
BERT model to identify the semantic similarity between pairs of texts from Quora dataset.

2. Introduction

2.1 Aim

The aim of this project is to develop a tool capable of identify similarity between pair of texts.
This tool is designed to help identify synthetically duplicate questions, which leads to improve
the efficiency of questioning-answering systems and enhancing the user experience.

2.2 Scope
The scope of this project includes:

® [oading and preprocessing the question pairs dataset

® Performing data analysis to understand a characteristic of the given dataset
® Building a Siamese BERT model
o

Training model for identifying text similarities

2.3 Methodology

® Data loading and preprocessing: Reading the dataset, handling missing values, text
cleaning for effective analysis

® Model building: Using Siamese BERT model, encoding text data for BERT input,
and compiling the model. Using L1 distance layer to capture the non-linearities

® Model Evaluation: Using model to predict then view results through confusion
matrix

3. Theoretical Part

3.1 Theoretical Foundations

1. Text Preprocessing

o Text Cleaning: The first step in text analysis is cleaning, which involves
removing unwanted characters, normalizing text (e.g., converting to
lowercase), and removing stopwords. This reduces noise and improves the
quality of the analysis.

o Tokenization: Divides the text into smaller units called tokens (words,
phrases, etc.), facilitating analysis.

o Lemmatization and Stemming: Reduces words to their root form or lemma,
helping to treat different words with the same meaning.

2. Text Representation

o Bag of Words (BoW): Represents text as a collection of words, ignoring
order but counting the frequency of each word.

o TF-IDF (Term Frequency-Inverse Document Frequency): An
improvement over BoW that weights words based on their frequency in a
document and across the entire collection of documents.

o Word Embeddings: Methods like Word2Vec, GloVe, and BERT represent
words in vector spaces where words with similar meanings are closer together.

3. Similarity Measures

o Euclidean Distance: Measures the distance between two feature vectors in a
multidimensional space.

o Cosine Similarity: Measures the cosine of the angle between two vectors,
useful for determining similarity in terms of direction.

o Jaccard Similarity: Measures the similarity between two sets as the
intersection divided by the union of the sets.

4. Machine Learning Models

o Supervised Models: Algorithms like Support Vector Machines (SVM),
Random Forest, and neural networks trained with labeled data to predict
similarity.

o Unsupervised Models: Algorithms like K-means clustering that group similar
texts without labeled data.

5. Deep Learning Models

o Transformers: Advanced models like BERT and GPT that capture the
bidirectional context of words and are highly effective in NLP tasks.

o Siamese Networks: Twin neural networks used to compute the similarity
between pairs of texts by comparing their vector representations.

3.2 Tools and Libraries

1. NLTK (Natural Language Toolkit): Provides tools for text preprocessing,
tokenization, lemmatization, and more.

2. SpaCy: A fast and robust NLP library that includes functionalities for tokenization,
lemmatization, part-of-speech tagging, and more.

3. Transformers (Hugging Face): Offers pretrained models like BERT and GPT for
advanced NLP tasks.

4. TensorFlow and Keras: Deep learning libraries that allow building and training
neural network models.

4. Practical Part

1. Loading and Preprocessing Data
Reading data from a CSV file.

o

train data

pd.read csv("train.csv")

train data.head(10)

id gidl aqid2 questionl question? is_duplicate
0 0 1 2 What is the step by step guide to invest in sh... What is the step by step guide to invest in sh... 0
101 3 4 What is the story of Kohinoor (Koh-i-Noor) Dia.. What would happen if the Indian government sto... 0
2 2 5 6 How can | increase the speed of my internet co.. How can Internet speed be increased by hacking... 0
3 3 7 8 Why am | mentally very lonely? How can | solve... Find the remainder when [math]23A{24}[/math] i... Q
4 4 9 10 Which one dissolve in water quikly sugar, salt... Which fish would survive in salt water? 0
5 5 11 12 Astrology: | am a Capricorn Sun Cap moon and c... I'm a triple Capricorn (Sun, Moon and ascendan... 1
6 6 13 14 Should | buy tiago? What keeps childern active and far from phone ... 0
7 7 15 16 How can | be a good geologist? What should | do to be a great geologist? 1
8 8 17 18 When do you use ¥ instead of L? When do you use "&" instead of "and"? 0
9 9 19 20 Motorola (company): Can | hack my Charter Moto... How do | hack Motorola DCX3400 for free internet? 0
o Cleaning and preprocessing text (removing unwanted characters, converting to
lowercase, lemmatization).
def text cleaning(x):
questions = re.sub('\s+\n+', ' ', x)
questions = re.sub('["a-zA-Z0-9]', ' ', questions)
questions = questions.lower ()

return questions

train data['questionl cleaned'] =

train data

[
[
train datal
[

'questionl'] .progress apply(text cleaning)

'question2 cleaned'] =

train data['question2'].progress apply(text cleaning)

train data

id

1]

qidl

1

aid2

2

10

question]

What is the step by step guide to
invest in sh..

What is the story of Kchinoor
(Koh-i-Noer) Dia...

How can | increase the speed of
my internet co...

Why am | mentally very lonely?
How can | solve...

Which one dissolve in water quikly
sugar, salt..

question2

What is the step by step guide to
invest in sh.

What would happen if the Indian
government sto...

How can Internet speed be
increased by hacking..

Find the remainder when
[math]23*{24}[/math] i...

Which fish would survive in salt
water?

is_duplicate

[}

questionl_cleaned

what is the step by step guide to
invest in sh_.

what is the story of kahinoor keh i
noor dia...

how can i increase the speed of my
internet co...

why am i mentally very lonely how
can i solve...

which one dissclve in water quikly
sugar salt..

question?_cleaned

what is the step by step guide to
invest in sh

what would happen if the indian
government sto...

how can interet speed be increased
by hacking...

find the remainder when math 23 24
math i...

which fish would survive in salt water

2. Data Exploration
o Analyzing the distribution of classes (similar vs. non-similar texts).

pio.renderers.default = 'colab'
fig = px.pie(train data, values='id', names='is duplicate', height=600,
title='Proportion of Duplicate and Non Duplicate Questions')

fig.show ()

Proportion of Duplicate and Non Duplicate Questions

| |
- o

o Visualizing the distributions of question lengths.

Compute ideal length of sentence
train data['questionl lens'] =
train data['questionl cleaned'].apply(lambda x: len(x.split()))
train data['question2 lens'] =

'question2 cleaned'].apply(lambda x: len(x.split()))

— —/ o/

train data

train data['questionl lens'].describe()
train data['question2 lens'].describe ()

Calculate Q1 and Q3 for question lengths

gl gl = train data['questionl lens'].quantile(0.25)
g3 gl = train data['questionl lens'].quantile(0.75)
gl g2 = train data['question2 lens'].quantile(0.25)
g3 g2 = train data['question2 lens'].quantile(0.75)

Calculate upper outlier threshold for question lengths
upper outlier gl = g3 gl + 1.5 * (g3 gl - gl ql)
upper outlier g2 = g3 g2 + 1.5 * (g3 g2 - gl g2)

Determine the maximum upper outlier threshold between the two
max upper outlier = max (upper outlier gl, upper outlier g2)

Since max upper outlier is 22 we should take a number close to and
higher than 22, so lets take ideal value as 50.
ideal len = 50

count 404287 000000

mean 11.376792
std 6. 480827
min 0. 000000
25% 7000000
50% 10000000
75% 15000000
max 243 000000

Name: questionZ_lens, dtwvpe: floatb4 . . .
results of train_data['question2_lens'"].describe()

3. Tokenization and Encoding
o Using a tokenizer (such as BERT's) to convert text into sequences of tokens.
o Ensuring all sequences have the same length through padding.

model checkpoint = 'bert-base-uncased'
tokenizer = AutoTokenizer.from pretrained(model checkpoint)

def encode text (text, tokenizer):

encoded = tokenizer.batch encode plus(
text,
add special tokens=True,
max length=50,
padding='max length',
truncation=True,
return attention mask=True,
return tensors="tf",

input ids = np.array(encoded["input ids"], dtype="int32")
attention masks = np.array(encoded["attention mask"],
dtype="int32")

return {
"input ids": input ids,
"attention masks": attention masks

final df['encoded questionl'] =

final df['questionl cleaned'].apply(lambda x: encode text ([x],
tokenizer))

final df['encoded question2'] =

final df['question2 cleaned'].apply(lambda x: encode text ([x],
tokenizer))

4. Building the Model
o Using pretrained models like BERT to obtain vector representations of
questions.
o Constructing a neural network to compare these representations and predict if
two questions are similar.

class LlDist (Layer) :

def init (self, **kwargs):

super () . init ()

def call (self,embeddingl, embedding?) :
return tf.math.abs (embeddingl - embedding2)

with strategy.scope() :

transformer model = TFBertModel.from pretrained(model checkpoint)

input ids inl = Input (shape=(None,),name="input idsl',
dtype='int32")

input masks inl = Input (shape=(None,), name='attention maskl',
dtype='int32")

input ids_in2 = Input (shape=(None,), name='input ids2',
dtype='int32")

input masks in2 = Input (shape=(None,), name='attention mask2',

dtype='int32")

embedding layerl = transformer model (input ids inl,
attention mask=input masks inl).last hidden state
embedding layer2 = transformer model (input ids in2,

attention mask=input masks in2).last hidden state

embeddingl = GlobalAveragePoolinglD () (embedding layerl)
embedding2 = GlobalAveragePoolinglD () (embedding layer2)
11 dist = L1Dist () (embeddingl, embedding2)

x = Dense (512, activation='relu') (11 dist)
output = Dense(l, activation='sigmoid') (x)

model = Model (inputs=[input ids inl, input masks inl,
input ids in2, input masks in2], outputs = output)

model.compile (loss='binary crossentropy',optimizer=tf.keras.optimiz
ers.Adam(learning rate=0.00001),metrics="accuracy')

model . summary ()

model.safetensers: 100% [NN ::0M/440M [00:05<00:00, 105MB/]

t used when initializing the TF 2.0 model TFBertMode ['cls.seq_relationship.weight', ‘cls.predictions bias', ‘cls.predictions transform LaverNorm bias’

3 expected if you are initializ

FBertMode| from a PyTorch model trained on another task or with anather architecture initializing a TFBertForSequ

. lassification model from a
S NOT expected if you are initializing TFBertModel from a PyTorch model that wou expect to be exactly identical (e.g. initializing a TFBertForSequenceClass

cation model from a BertForSe

h s of TFBertMace| were initialized from the PyTorch mode

If your task is similar to the task the mods| of the checkpoint was trained on, vou can already use TFBertModel for predictions without further training
Mode | : “mode |

Layer (type) Output Shaps Param # Connected to

inout_ids! (Inputlayer) [{None, None)l 0 n

attention_maskl (Inputlayer) [(None, Mone)] 0]

input_ids2 (InputLayer) [{None, Nome)] 0 0

attention_mask2 (Inputlayer) [(None, Mone)l 0 n

tf_bert_mode| (TFBertModel) TFBaseMode |OutoutWi 109482240 ["input_ids1[0] (0]

thPo: At
tentions(las de
n_state=(None, None attention_mask2 [0] (0] ']

ttent ions=Non
ss_attentions

age_poolingld (Glob (Mone, 76B) 0 [t _bert_model [0] (0] °]
nall)

verage_poolingld_1 (G (Nene, 768) a ["tf_bert_model [1][0] ']

oba agePoolinglD)

11_dist (LIDist) (Nons, T63) 0 ['global_averags_pool inald[0] (0] *
. “global_average_poolingld_1 [0 [
dense (Dense) (None, 512) 393728 ['11_dist[0]101"]

dense_1 (Dense) (None, 1) 513 ['dense[0] (0] ']

Total params
Trainable pa

Non-trainable

5. Training and Evaluating the Model
o Splitting the data into training and test sets.
o Training the model using techniques like early stopping and learning rate
reduction.

earlystopping = EarlyStopping(monitor='val loss',min delta = 0,
patience = 5, verbose = 1, restore best weights=True)

learning rate reduction = ReducelROnPlateau(monitor='val loss',
patience=3,
verbose=1,
factor=0.3,
min 1r=0.00000001)

Reshape training input ids and attention masks

X1 train input ids = np.squeeze (X1l train input ids, axis=1)

X1 train attention masks = np.squeeze (Xl train attention masks, axis=1l)
X2 train input ids = np.squeeze (X2 train input ids, axis=l)

X2 train attention masks = np.squeeze (X2 train attention masks, axis=1)

Reshape test input ids and attention masks

X1 test input ids = np.squeeze (Xl test input ids, axis=1)

X1 test attention masks = np.squeeze (X1l test attention masks, axis=1)
X2 test input ids = np.squeeze (X2 test input ids, axis=1)

X2 test attention masks = np.squeeze (X2 test attention masks, axis=1)

Train model
history = model.fit ((X1 train input ids, X1 train attention masks,
X2 train input ids, X2 train attention masks),
y train, batch size=BATCH SIZE, epochs=5,
validation data=((X1l test input ids,
X1 test attention masks, X2 test input ids, X2 test attention masks),
y test),
callbacks=[earlystopping, learning rate reduction])

o Evaluating the model using metrics like the confusion matrix and
classification report.

y_pred = model.predict ((X1l test input ids,
X1 test attention masks,
X2 test input ids,X2 test attention masks))

Display confusion matrix to view results
from sklearn.metrics import classification report, confusion matrix

y _pred[y pred>=0.5] =1
y pred[y pred<0.5] = 0

sns.heatmap (confusion matrix(y test,
y_pred),cmap='viridis', annot=True, fmt="'.5g",

xticklabels=['Dissimilar', 'Similar'],yticklabels=['Dissimila
r','Similar'])
plt.xlabel ('Predicted Class')
plt.ylabel ('Actual Class')
plt.show ()

-1000
I
E
a -8000
(m]
(]
wn
©
Y 6000
@
3
]
<
& 4000
E
-
2000

Dissimilar Similar
Predicted Class

Print other evaluation metrics
print (classification report(y test,y pred))

precision recal |l fl-score support

(0 0,90 0. .84 .87 12674

1 0. 75 0. .84 .74 1326

accuracy .54 20000
macro avg 0. 582 0. 84 .83 20000

we lghted avg 0,84 0. .84 .54 20000

5. Summary

Identifying similar texts is a complex task involving multiple stages of processing and analysis.
The techniques and tools described allow this task to be approached efficiently and accurately,
using traditional methods as well as advanced deep learning models. The project can be
developed by further optimizing the model and exploring additional datasets for broader
applicability. The correct application of these methods can significantly improve applications
in various domains such as information retrieval, online assistance, and more.

6. Bibliography

Quora dataset: https://www.kaggle.com/c/quora-question-pairs/

Jupyter notebook for project (Full Code):
https://colab.research.google.com/drive/1sADkeSRsUBSNvyavYncnelPyqlv31AS5x?usp=sha
rin

Reference for project: https://www.kaggle.com/code/quadeer1Ssh/siamese-bert-for-quora-
question-similarity

https://www.kaggle.com/c/quora-question-pairs/
https://colab.research.google.com/drive/1sADkeSRsUBSNyavYncneIPyqlv31AS5x?usp=sharing
https://colab.research.google.com/drive/1sADkeSRsUBSNyavYncneIPyqlv31AS5x?usp=sharing

