
NLP - Voice Assistant

NLP Voice Assistant with GUI

End-of-semester project in the natural language
processing class

Authors:
Brian Perret, Lenny Chiadmi-Delage

Acknowledgements
We would like to express our special thanks to Radosław Kycia. As our teacher for NLP classes, he

taught us how to implement a chatbot using Python , which was fundamental to the success of this
project.

Abstract
In this project, we developed a voice assistant with a graphical user interface (GUI) in Python. Our
voice assistant can recognize spoken commands, process natural language inputs, and respond

accordingly. This project combines state-of-the-art NLP techniques with a user-friendly interface to

provide an interactive and intuitive user experience. The assistant is capable of performing tasks like
answering predefined questions and opening applications such as WhatsApp and Firefox. This report

outlines the purpose, scope, and methodologies of the project, followed by a detailed explanation of the
theoretical background and practical implementation.

Introduction

2.1 Aim
The primary aim of this project was to create an interactive NLP voice assistant that can recognize and

process spoken commands, respond appropriately, and perform specific tasks such as opening
applications. The voice assistant was designed to provide a seamless and intuitive user experience by

integrating advanced NLP techniques with a user-friendly GUI.

2.2 Scope
The scope of this project includes:

2.3 Methodology
The methodology and tools used in this project include:

Implementing a voice recognition system to capture and interpret spoken commands.

Developing a text-to-speech system for the assistant to respond verbally.

Creating a GUI to facilitate easy interaction with the assistant.

Integrating functionalities to recognize and respond to predefined questions.

Implementing commands to open specific applications (WhatsApp, Firefox.

Testing the system on a Windows operating system.

Programming Language: Python

Voice Recognition: speech_recognition library

Text-to-Speech: pyttsx3 library

NLP Techniques: TF-IDF vectorization, cosine similarity using scikit-learn

GUI: Flet library

Application Automation: AppOpener library

Project Environment: Virtual environment for dependency management

I. Theoretical Part
In this section, we discuss the theoretical foundations that were essential for solving the problem of

creating a functional NLP voice assistant.

3.1 Natural Language Processing (NLP)
NLP is a field of artificial intelligence that focuses on the interaction between computers and humans

through natural language. It involves several tasks such as speech recognition, language

understanding, and language generation. In this project, we utilized NLP techniques to process and
understand user queries and generate appropriate responses.

3.1.1 Speech Recognition
Speech recognition involves converting spoken language into text. We used the speech_recognition
library in Python to capture and interpret spoken commands. This library provides access to several

speech recognition engines, including CMU-Sphinx speech API.

3.1.2 Text-to-Speech
Text-to-speech (TTS) converts text into spoken language. We used the pyttsx3 library, which is a

text-to-speech conversion library in Python. It supports multiple TTS engines and allows customization

of voice properties such as rate and volume.

3.1.3 TF-IDF Vectorization
Term Frequency-Inverse Document Frequency (TF-IDF) is a numerical statistic that reflects the

importance of a word in a document relative to a collection of documents (corpus). We used TF-IDF to
transform user queries and predefined responses into vector form, enabling efficient similarity

computation.

3.1.4 Cosine Similarity
Cosine similarity measures the cosine of the angle between two non-zero vectors. It is used to
determine the similarity between two vectors. In our project, cosine similarity was used to find the

closest match between user queries and predefined responses.

II. Practical Part
In this section, we describe the practical implementation of the NLP voice assistant, present the results,

and discuss our findings.

4.1 Implementation

4.1.1 Setting Up the Environment
We started by setting up a Python virtual environment to manage dependencies. The required libraries

were installed using pip .

4.1.2 Voice Recognition and Text-to-Speech
The speech_recognition library was used to capture and convert spoken commands into text. The
pyttsx3 library enabled the assistant to respond verbally. The voice engine was configured to use a

specific voice profile.

4.1.3 GUI Development
The GUI was developed using the Flet library, which provides a simple way to create web-based user

interfaces. The main components of the GUI include a text field for user input and buttons to send
commands or initiate voice recognition.

4.1.4 NLP Processing
We created a class, ChatBotLogic , to handle NLP tasks. The class uses TF-IDF vectorization to

convert text into vectors and cosine similarity to match user queries with predefined responses.
Specific commands to open applications were also implemented.

4.1.5 Integration
The GUI and NLP components were integrated to provide a seamless user experience. When the user
speaks or types a command, the system processes the input and generates an appropriate response,

which is then displayed and spoken.

4.2 Results
The NLP voice assistant successfully recognizes spoken commands, processes natural language
inputs, and responds accordingly. It can perform specific tasks like opening WhatsApp and Firefox. The

GUI facilitates easy interaction, making the assistant user-friendly.

4.2.1 Performance
The performance of the assistant was satisfactory during testing on a Windows system. The voice
recognition was accurate, and the responses were appropriate for the predefined questions. The

application-opening functionality worked as expected.

4.2.2 User Experience
The GUI was intuitive and easy to use. The text-to-speech responses added to the interactive

experience, making the assistant feel more responsive and engaging.

Summary
The primary goal of developing an NLP voice assistant with a GUI was achieved. The assistant can

recognize and process spoken commands, respond appropriately, and perform specific tasks. While
the project was successful on a Windows system, future work could involve testing and optimizing the

assistant for other operating systems. Additionally, expanding the range of commands and improving
the NLP capabilities would further enhance the assistant's functionality.

Bibliography

By clearly defining the problem, leveraging suitable methodologies, and implementing an effective
solution, we have created a functional and interactive NLP voice assistant that demonstrates the

potential of combining NLP techniques with user interface.

1. speech_recognition library documentation: Speech Recognition Library

2. pyttsx3 library documentation: pyttsx3 Library

3. scikit-learn documentation: Scikit-learn Library

4. Flet library documentation: Flet Library

5. AppOpener library documentation: AppOpener Library

6. CMU Sphinx library documentation: CMU Sphinx Library

7. Wikipedia article on TF-IDF: TF-IDF

8. Wikipedia article on Cosine Similarity: Cosine Similarity

9. Natural Language Toolkit (nltk) documentation: NLTK Library

https://pypi.org/project/SpeechRecognition/
https://pypi.org/project/pyttsx3/
https://scikit-learn.org/stable/
https://flet.dev/
https://pypi.org/project/AppOpener/
https://github.com/cmusphinx
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Cosine_similarity
https://www.nltk.org/

