

Natural Language Processing – Erasmus
Ac. Year 2023/2024

Text Summarizer Application

Authors:

Karyna Ouahrani

Yuliia Boiko

1. Abstract

This project involves the development of a Text Summarizer Application

using Python's tkinter library for the graphical user interface (GUI) and

Natural Language Processing (NLP) techniques from the nltk library for text

summarization. The application allows users to input a block of text and

generate a concise summary, enhancing readability and understanding. This

report provides a comprehensive overview of the project's objectives, scope,

methodology, theoretical background, practical implementation, results, and

conclusions.

2. Introduction

2.1 Aim

There has been a massive increase in text data from numerous sources in recent

years. This text is an invaluable source of knowledge and information that must be

carefully summarized in order to be put to good use. The aim of this project is to

develop a user-friendly software application that can automatically generate a

summary of a given text. This tool is designed to help users quickly understand the

main points of lengthy documents, articles, or any substantial text, thus improving

their productivity and comprehension.

2.2 Scope

The scope of this project encompasses the following aspects:

• Development of a Graphical User Interface (GUI): Using tkinter, the

application includes interactive components like Start, Exit, and Restart

buttons to enhance user interaction.

• Text Summarization Functionality: Leveraging the nltk library, the

application processes and summarizes input text efficiently.

• User Experience Design: Incorporating styling elements to make the

application visually appealing and easy to navigate.

• Instructional Feedback: Providing clear instructions and error messages to

guide users through the summarization process.

2.3 Methodology

Tools and Libraries Used:

• Python: The primary programming language for development the

application

• tkinter: A standard Python library used for creating the GUI. [4]

• nltk (Natural Language Toolkit): Utilized for various NLP tasks

including tokenization, stopword removal, and sentence scoring. [5]

• Heapq: A Python library used for selecting the most important sentences

based on their scores.[6]

Development Process:

1. Setting Up the Environment: Installed necessary libraries and

downloaded required NLTK datasets.

2. Designing the GUI: Created the main window with interactive buttons

and a text input area.

3. Implementing the Text Summarization Function: Developed a

function that summarizes text using NLP techniques.

4. Integrating Components: Ensured seamless interaction between the

GUI elements and the summarization function.

5. Adding Styling: Enhanced the visual appeal of the application through

custom fonts, colors, and layout adjustments.

Theoretical Part

3. Text Summarization Theory

The text summarization is a process to create an easily understood and

readable summary while maintaining the main ideas and overall meaning of the

text. Many techniques for automatic text summarization have been developed

recently and are being used effectively across a range of domains. As a preview of

the documents, search engines provide snippets. Additional examples include

information extraction techniques or news websites that provide summarized

summaries of news items to make browsing easier. [2] [3]

Types of Text Summarization:

In general, automatic summarization can be achieved by two distinct

methods: abstraction and extraction. Extractive summarization techniques rely only

on sentence extraction from the source text; they locate key passages in the text

and produce them verbatim. In contrast, the goal of abstractive summarization

techniques is to generate significant information in an original way. To put it

another way, they analyze and understand the text using sophisticated natural

language processing algorithms to produce a new, condensed version that only

includes the most important details from the original. The majority of current

summarizing research has focused on extractive summarization, even

though human-generated summaries are typically not exhaustive. [2]

When compared to automatic abstractive summaries, purely extractive

summaries frequently produce superior outcomes. This is due to the fact that data-

driven procedures, such phrase extraction, are often easier to handle than

abstractive summarizing methods, which deal with issues like semantic

representation, inference, and natural language production. Currently, there is not a

summarization system that is entirely abstractive. To create the text's abstract,

existing abstractive summarizers frequently depend on an extractive preprocessing

step.[3]

Techniques Used:

For this project, we focused on extractive summarization, which includes the

following steps:

• Tokenization: The process of breaking a string into distinguishable

linguistic units that make up a piece of language data. [1]

• Stopword Removal: Common words that add little meaning (e.g., 'and',

'the') are removed to focus on significant terms. Stopwords are words that

appear frequently but do not contribute to the overall meaning of the text.[1]

• Word Frequency Calculation: Counting the occurrences of each word to

determine its importance within the text. This helps in identifying key terms

that are central to the text's theme.[1]

• Sentence Scoring: Assigning scores to sentences based on the frequency of

important words they contain. Sentences that contain more high-frequency

words are considered more important.[1]

• Summary Generation: Selecting and concatenating the top-scoring

sentences to form the summary. This step involves choosing a subset of

sentences that best represent the overall content of the original text.[1]

Practical Part

4. Solution and Implementation

4.1 Libraries and Data Setup:

• The primary programming language of text summarizer application is

Python.

• Importing essential libraries: nltk for natural language processing, heapq for

sentence scoring, and tkinter for the GUI.

 4.2 Graphical User Interface (GUI)

The GUI was designed using tkinter and includes the following components:

• Main Frame: The initial interface that contains an introductory message

explaining the purpose of the application and two buttons: Start and Exit.

• Text Input Frame: Appears when the Start button is pressed, containing a

text box for input, a button to summarize the text, and a Restart button to

clear the input and start over.

4.3 Text Summarization Function

The text summarization function processes the input text as follows:

• Tokenization: The input text is split into sentences and words.

• Stopword Removal: Stopwords and punctuation are removed from the

word list.

• Word Frequency Calculation: The frequencies of the remaining words are

calculated.

• Sentence Scoring: Sentences are scored based on the frequencies of the

words they contain.

• Summary Generation: The top-scoring sentences are selected to form the

summary.

Fig1. Part of the code of text summarizer function

4.4 Integration and Styling

The components were integrated to ensure seamless interaction:

• Start Button: Switches from the mainframe to the text input frame.

• Summarize Button: Calls the summarization function and displays the

result below the input text box.

• Restart Button: Clears the input text and summary, allowing the user to

start the process again.

Styling was applied to enhance the user experience, including:

• Custom fonts for better readability.

• Background colors to distinguish different sections.

• Button styling to make interactive elements more intuitive.

4.5 Results

Fig2. Main Frame of the application

Fig3. The application for text summarizer in use

The application successfully summarizes input text into concise versions, as

demonstrated by various test inputs. The functionality satisfies the project goals,

and the GUI offers a user-friendly interface. It is practical and effective since users

can provide material, create summaries, and resume the process with efficiency.

Conclusion

The project's objectives have all been successfully accomplished. It was effective

in creating an application that is convenient to use for text summarization, using

nltk for text processing and tkinter for the graphical user interface (GUI). The

resulting program gives users brief overviews of the input texts and has excellent

summarizing functionality. The project's requirements and expectations have all

been met by the seamless and user-friendly text summarizing tool that has been

produced via the integration of libraries and technologies.

This application serves as a valuable tool for people and professionals across

various domains. For people in a variety of fields, both professionals as well as

people can benefit greatly from this application. It can be used by students to

quickly summarize extensive academic books for homework or research. It can be

used by experts in disciplines like journalism, research, and content development

to highlight important ideas or points from papers, reports, or articles. The tool can

also help people with busy schedules by effectively processing information from

emails, blogs, and news items. All things considered, the tool provides a practical

and time-saving option for anyone who needs to reduce lengthy texts into readable

summaries.

Bibliography

1. Bird S., Klein E., Loper E. Natural language processing with Python:

analyzing text with the natural language toolkit. – " O'Reilly Media,

Inc.", 2009.

2. Allahyari M. et al. Text summarization techniques: a brief survey

//arXiv preprint arXiv:1707.02268. – 2017.

3. Gambhir M., Gupta V. Recent automatic text summarization

techniques: a survey //Artificial Intelligence Review. – 2017. – Т. 47.

– №. 1. – С. 1-66.

4. Lundh F. An introduction to tkinter. – 1999.

5. Bird S. NLTK: the natural language toolkit //Proceedings of the

COLING/ACL 2006 Interactive Presentation Sessions. – 2006. – С.

69-72.

6. Brodal G. S. Priority queues with decreasing keys //Theoretical

Computer Science. – 2024. – Т. 1000. – С. 114563.

