Cracow University of Technology

Department of Computer Sciences

Python — Erasmus

Ac. Year 2023/2024

Project

Snakezuku

£

Team’s Member

Kenza Bennani

Anissa Bustarret—Labaali

Déborah Renard

Cracow University of Technology

Department of Computer Sciences

Contents

LY o1 4 - ot AR PRSPPSO PSR 3
T Ao o U ol 4 o] o U TP PR 4
S N | o o OO O TP PP PPPUPPPON 4
Yol o] o 1= I PP 4

TR |V =1 d o To o [o] Lo -V 2N U 4

Bl 1Yo 43 Lor= | I o - [SRR 6
1. Brief history of Takuzu and SNake Samesccoovuiiiiiiiiiiiie e 6

R V| LT o) i o o [= o =TSR 6
= Yot o= 1 I o - | 8
i [01 (=T i Tl S TS OP SO UR PSPPI 8

2 SNAKE et e bt e bt e h et st e e eh et e s bt e e bt e e bt e e hbeenhbeesateesbeeenee s 11

B TAKUZU et e h bbbt b e bt s h e bt e e re e neesreesheesaeesanenaee 13

TR] oo 11 o o N PP T RO P S PPROPTTOPROt 13

T] oo [} o 1 A TP OO P PP UPRPPRRTOPRTOPRIOt 14

TR ©o g Te 13 4o o G PP R VSRR 15

IV, RESOIUTION ..ttt et e b et e bt et e e b e e b e e b e e b eneen 16
RESUIES ..ttt et ettt h e e s e s b e e b et e b et e be e e ente e s re e e re e s reeearenesnnee e 18
SUIMIMIAIY ettt et e et e e et e ettt e et e e e e et s e s e e e e aeaeaeaeeaaaaaeeaeaeeeesesassssssssssssasnsnsssnssanannnnnn 21

0= (=] (=] Lol TP T T T T TR 22

Cracow University of Technology

Department of Computer Sciences

Abstract

This project presents the development of two interactive games, Snake and Takuzu, using
Python. We designed an easy-to-use interface that lets players choose which game they want
to play.

Our goal was to develop something entertaining while integrating all the knowledge we have
acquired during the semester and learning more about game development.

This report covers a general introduction which begins with an introduction outlining the aim,
scope, and methodology of our project. Then, the theoretical part provides a brief history and
the rules of Takuzu and Snake. Last but not least, the practical part details the development
of the user interface and the implementation of both games.

Cracow University of Technology

Department of Computer Sciences

Introduction

1. Aim

The goal of this project is to develop an application that allows users to choose between

playing Snake and Takuzu through an interactive interface. The interface not only lets users

select their preferred game but also provides access to the rules for both games. For Snake,

an automatic point counter is integrated to keep track of the player's score. For Takuzu, if the

player is unable to solve the puzzle, they have the option to view the solution. This project

aims to create an enjoyable experience by combining game development with practical
programming skills.

2. Scope

This project covers several keys that we have used to implement the game:

— Knowledge: Crafting the rules, objectives, and overall gameplay experience for each
game.

— Implementation: Writing the code using Python. Splitting the code into 3 files and
focusing on creating functional and efficient functions to play the game in a graphical
user interface.

— Testing and Debugging: Fix bugs, ensuring the games run smoothly and without
errors.

— Documentation: Providing comprehensive documentation, including user
instructions, code comments, and this project report, to facilitate understanding.

3. Methodology

We coded in Python directly on text files which we then executed directly via the terminal.
We have split our code into 3 files : interface3.py in which the general interface and the takuzu
interface are coded ; takuzu3.py in which the takuzu is coded without its interface and
snake3.py in which the snake and its interface is coded.

We want to raise an important point. In the beginning, we wanted to implement only a
snake game for our project, but we realized that we had enough time to implement a sort of
mini games project so we decided to add the Takuzu game. This is why we have a file with
the snake game and its own interface and two different files : one with the Takuzu game and
another with its interface including also the main interface of the game.

For the interface we used only one library:

Cracow University of Technology

Department of Computer Sciences

- tkinter : comprehensive library used for creating graphical user
interfaces with buttons, menus, and other widgets. We used it to code the general
interface and the interface of takuzu. We also imports the messagebox module from
the tkinter library, which provides various types of message boxes for displaying
information, warnings, and errors.

- The pygame library, which is a set of Python modules designed for writing video
games, including graphics and sound libraries

For the snake we used several librairies :

- turtle : library focused on creating graphics and drawings by controlling a cursor (the
"turtle") on a canvas. We used it to create the interface of the Snake game.

- time : provides functions for handling time-related tasks. We used it to give the player
time to change the direction of the snake and to restart the game.

- random : generates random numers. We used it to generate a random food for the
snake.

- Image: This imports the Image module from the PIL (Python Imaging Library) package,
which allows for image processing tasks such as opening, manipulating, and saving
various image file formats.

For the takuzu we used only one library :

- numpy : used for numerical computing, providing support for large, multi-dimensional
arrays and matrices, along with a vast collection of mathematical functions to operate
on these arrays efficiently. We used it to generate arrays.

Cracow University of Technology

Department of Computer Sciences

Theoretical part

. Brief history of Takuzu and Snake games

Snake Game

The Snake game originated as an arcade game called Blockade, released in 1976 by
Gremlin. It gained widespread popularity with its inclusion on Nokia mobile phones in
1997, becoming a classic. The first known coding of a digital version was in 1976 on
arcade machines, and it has since been implemented on various platforms, including
PCs and mobile devices. [2]

Takuzu Game

Takuzu, also known as Binary Puzzle, is a logic puzzle game involving a grid where
players fill in cells with Os and 1s according to specific rules. It does not have a clear,
singular origin like Snake, but its concept is rooted in binary and logic puzzles, gaining
popularity in puzzle magazines and online platforms in the early 21st century. The first
coded versions appeared on puzzle websites in early 2000s and apps as its popularity
grew. [3]

. Rules of the games

Snake

In the Snake game, the player controls a growing line, or "snake," that moves around
the screen. The objective is to eat food items that appear at random positions, which
causes the snake to grow longer. The game ends if the snake collides with itself. In our
case, when the user plays left and right successively only if the snake has eaten at least
2 items.

Takuzu
The goal is to fill the grid with Os and 1s according to these rules:

- Each row and column must contain an equal number of Os and 1s.

- No more than two of the same number can be adjacent vertically or horizontally.

- Each row and column must be unique, meaning no two rows or columns can be
identical.

Cracow University of Technology

Department of Computer Sciences

Practical part

1. Interface

The code interface3 consists of a class MainApplication and a class Takuzulnterface.

In the first class, MainApplication, we first have the function for setting up the entry window.
As soon as the first window opens, welcome music starts playing.

The player can then enter his or her name before playing.

class MainApplication:
def __init__(self, root):
self.root = root
self.root.title()
self.root.geometry()
Initialize pygame mixer
pygame.mixer.init()
pygame.mixer.music.load() # Replace with your interface music file
pygame.mixer.music.play(-1) # Play the music in a loop
Create welcome frame
self.welcome_frame = tk.Frame(self.root)
self.welcome_frame.pack(pady=20)

self.welcome label = tk.Label(self.welcome frame, text=)
self.welcome label.pack(pady=5)

self.name_entry = tk.Entry(self.welcome_frame)
self.name_entry.pack(pady=5)

self.continue_button = tk.Button(self.welcome_frame, text= B
command=self.show_main_menu)
self.continue_button.pack(pady=10)

Main menu frame (initially hidden)
self.main_menu_frame = tk.Frame(self.root)

Then click on “Continue” to display the main menu, which allows, with the help of buttons, to
choose the game we want to play or to see the rules of the said games thanks to a messagebox.

—> Choice number 1: "Play Snake"

Initializes and starts, with stopping music, the Snake game by creating an instance of
SnakeGame and calling its run method.

def play_snake(self):
pygame.mixer.music.stop()
self.root.destroy()
snake_game = SnakeGame()
snake game.run()

—> Choice number 2: "Play Takuzu"

Initializes a new window , with stopping the music, the Takuzu game by creating an instance
of Takuzulnterface.

Cracow University of Technology

Department of Computer Sciences

def play_takuzu(self):
pvgame.mixer.music.stop()
self.root.destroy()
root = tk.Tk()
app = TakuzulInterface(root)
root.mainloop()

Regarding the second class, Takuzulnterface, similarly, we first have an __init__ function that
creates a Takuzu game window using the create_takuzu_grid function. This window also
contains, in addition to the Takuzu grid, a button that solves the Takuzu. In this window we
also have a new music starting.

class TakuzuInterface:
def __init__(self, root):
self.root = root
self.root.title()
self.root.geometry()

pygame.mixer.init()
pygame.mixer.music.load()
pygame.mixer.music.play(-1)

self.initial_grid = [
[None, 1, None, @],
[None, None, @, None],
[None, ©, None, None],
[1, 1, None, @]
]
self.grid = self.create_takuzu grid(®, @, self.initial_grid)
self.solve_buttonl = tk.Button(self.root, text= , command=lambda:
self.solve_grid(self.initial_grid))
self.solve_buttonl.grid(row=1, column=0, pady=18)

self.back_button = tk.Button(self.root, text= , command=self.go_back)
self.back_button.grid(row=2, column=0, pady=108)

create takuzu grid:

This function takes the initial grid and transforms each cell with a None value into an
editable cell. Thus, the player can attempt to solve the Takuzu on this main window.

def create_takuzu_grid(self, row, column, initial_values=None):
frame = tk.Frame(self.root, width=280, height=200)
frame.grid(row=row, column=column, padx=10, pady=10)
entries = []
for 1 in range(4):
row_entries = []
for j in range(4):
value = initial_values[i][]j] if initial_values else None
cell = tk.Entry(frame, width=3, font=(, 16), justify=)
cell.grid(row=1i, column=j, padx=5, pady=5)
cell.insert(tk.END, value if value is not None else)
row_entries.append(cell)
entries.append(row_entries)
return entries

solve grid:

If the "Solve Grid" button is pressed, then the solve_grid function comes into play. It uses
three functions from the Takuzus3 file:

- non_to_deux: transforms the None values in the initial grid into twos.
- Résolution_: which solves the Takuzu.

- get_final: retrieves the new solved grid.

b ‘ Cracow University of Technology

Department of Computer Sciences

Once these three functions are finished, the new solved grid is
displayed using the show_additional_grid function.

def solve_grid(self, grid_entries):
grid = none_to_deux(grid_entries)
Résolution(grid)
solved grid = get_final(grid)
self.show_additional_grid(solved_grid)

show additional grid:

This function creates a new window showing the solution grid (non-editable). The player can
compare their grid with the result grid.

def show_additional_grid(self, solved_grid):
additional_grid = tk.Toplevel()
additional_grid.title()
additional_grid.geometry()

frame = tk.Frame(additional_grid, width=280, height=280)
frame.pack(padx=50, pady=50)

for 1 in range(4):
for j in range(4):
value = solved_grid[i1][]j]
label = tk.Label{frame, text=value, width=3, font=(, 16),
justify= , borderwidth=2, relief=)
label.grid(row=i, column=j, padx=5, pady=5)

go_back:

This function simply takes you back to the main menu, with the old music of course.

def go_back(self):
pygame.mixer.music.stop()
self.root.destroy()
root = tk.Tk()
app = MainApplication(root)
root.mainloop()

Finally,

if _ name == :
root = tk.Tk()
app = MainApplication(root)
root.mainloop()

Initializes the main tkinter root window and starts the MainApplication. Runs the tkinter main
loop to keep the application running.

b ‘ Cracow University of Technology

Department of Computer Sciences

2. Snake

For the implementation of the game, we have been inspired by a gitHub code [1]. But we have
modified almost everything, and we have added some amusing functionalities such as images
and music. Indeed, we have used Pygame library for background music.

The SnakeGame class is responsible for initializing the game, handling user inputs, updating
the game state, and managing game elements such as the snake and the food. The main
components and methods of this class are described below.

This part of the code is used to replace the head of the snake by a real image of a snake’s head
and a real image of the food’s snake (here an apple).

Open an existing image
original_image = Image.open(ple.gif")

Resize the image
resized_image = original_image.resize((20, 20), Image.ANTIALIAS)

Save the resized image
resized_image.save(ple2.gif")

Open an existing image of the snake head

original_head_image = Image.open(pent.gif")

Resize the snake head image

resized_head_image = original_head_image.resize((20, 20), Image.ANTIALIAS)
Save the resized snake head image

resized_head_image.save(pent2.gif")

The __init__ method sets up the game environment, initializes variables, loads background
music, and creates the initial game objects.

The methods go_up, go_down, go_left, and go_right change the direction of the snake based
on keyboard inputs. These methods are bound to specific keys using the onkeypress method.

def go up(self):
self.head.direction =

def go_down(self):
self.head.direction =

def go left(self):
self.head.direction = "left

def go right(self):
self.head.direction = "right

The ‘move’ method updates the position of the snake's head based on its current direction. It
also handles the screen wrap-around feature, ensuring the snake reappears on the opposite
side if it crosses the border.

Wrap the snake around if it crosses the border
if self.head.xcor() > 29
self.head.setx(-290)
if self.head.xcor() = -2¢
self.head.setx(290)
if self.head.ycor() = 2
self.head.sety(-220)
if self.head.ycor() < -29
self.head.sety(290)

. ‘ Cracow University of Technology

Department of Computer Sciences

The play_game method is the main game loop. It continuously updates
the game state, checks for collisions, moves the snake, updates the score, and redraws the
game screen.

The change_food_position method changes the position of the food to a new random location
on the screen, ensuring it does not overlap with the snake's body.

def change_ food position(self):

while True:
X = random.randint(-290, 290)
y = random.randint(-290, 290)
if (x, y) not in [(segment.xcor(), segment.ycor()) for segment in self.segments]:

break
self.food.goto(x, y)

The add_segment method adds a new segment to the snake's body, which occurs when the
snake eats the food.

def add_segment(self):
new_segment = turtle.Turtle()
new_segment.speed(0)
new_segment.shape("squar
new_segment.color("grey
new_segment.penup()
self.segments.append(new_segment)

e")
)

The reset_game method resets the game state when the snake collides with itself. It clears
the snake's body, resets the score, and repositions the head.
def reset_game(self):

time.sleep(1)
self.head.goto(®, 0)

self.head.direction = "stop
for segment in self.segments:
segment.goto(10008, 1000)

self.segments.clear()
self.score = €
self.delay = 0.2€
self.pen.clear()
self.pen.write("Score: {} High Score: {}".format(self.score, self.high_score),
gn="center",
font=("Courier", 24, "normal”))

The run method starts the game by calling the play_game method.

def run(self):
self.play_game()

The main function initializes an instance of the SnakeGame class and calls its run method to
start the game.

if name_ == " main__

game = Snakeoame(}_
game.run()

b ‘ Cracow University of Technology

Department of Computer Sciences

3. Takuzu

i. Condition1

As a reminder, condition 1 concerns the number of 1s and Os allowed next to each other in a
row.

import numpy as np

def conditionl_colonne(colonne, a, v):

k=20
colonnela] = v will
while k < (len(colonne) - 3):
if colonne[kl != 2 and colonnelk]l == colonne[k+1] == colonne[k+2]:

return False
else:
k+=1
return True

This function is a boolean funtion which takes as arguments a column in the form of a list, a
value for the cell to be changed and the index of the cell in this list. First we change the cell in
guestion by the value and check whether the condition will be validated with this change. The
function allows us to scan the column to see if it contains more than two 1s or two 0s next to
each other in a row. We vary a variable k up to the size of line-3 so that we are not out of the
table when we look at the k-th, k+1st and k+2nd cell.

def conditionl_ligne(ligne, b, valeur):

ligne[b] = valeur
while k < (len(ligne) - 3):

if lignelk] !'= 2 and ligne[k] == lignelk+1] == ligne[k+2]:
return False

else:
k += 1

return True

This is the same functions but for lines.

b ‘ Cracow University of Technology

Department of Computer Sciences

. Condition 2

Condition 2 ensures that there are as many 1s and Os in the same row or column

def somme_colonne(colonne, x, valeur):

nbrl, nbro =0, 0
colonne[x] = valeur
for k in range(len(colonne)):
if colonnelk] ==
nbrl += 1
if colonnelk] == 0:
nbro += 1
if nbrl > (len(colonne)) / 2 or nbr@ > (len(colonne)) / 2:

return False
return True

As in the previous condition, this is a boolean function and we will change the selected cell to
a given value to test whether the condition is validated with this change. In this condition we
initialise 2 counters which will count respectively, nbrl, the number of 1s and nbr0 the number
of 0s. However, if more than half of the cells in a column contain 1s (or Os) then the number
of 1s (or Os) are different, the function returns false which means that the grid does not meet
the takuzu conditions.

def somme_ligne(ligne, y, valeur):

lignely] = valeur
nbrl, nbro = 0, 0
for k in range(len(ligne)):
if lignelk] == 1:
nbrl += 1
if lignelk] == 0:
nbré += 1
if nbrl > (len{(ligne)) / 2 or nbr@ > (len(ligne)) / 2:

return False
return True

We do the same for the lines.

b ‘ Cracow University of Technology

Department of Computer Sciences

. Condition 3

Condition 3 allows us to check that the rows and columns are different from each other.

#

def Condition3(grille):
liste_ligne, liste_colonne, L = [], []1, []
¢, b, k, 1L=90,0,0,0
Yy, x=0, 0

while y < len(grille):
for x in range(len(grille)):
coord = (x, y
L.append(grillely] [x])
liste_ligne.append(L)
L=10
y +=1
Yy, Xx=0, 0
while x < len(grille):
for y in range(len{(grille)):
coord = (x, y)
L.append(grille[y] [x])
liste_colonne.append(L)
L=1]
X +=1
To do this, we first create a list (ligne_liste) which will contain all the lines in the grid. For each
y, we vary the x so we can add all the cells of the line in the list. When a line is finished, we
move on to the next one by adding 1 to y and so on. Finally, we reset our coordinates to (0,0)

and then we do the same for the columns.

We do the same for the columns with liste_colonne. But this time we vary the y for each x.

while ¢ < len{liste_ligne) and liste_lignel[c] not in (liste_ligne[:c] + liste_lignelc+1:]):

c+=1

while b < len{liste_colonne) and liste_colonne(b] not in (liste_colonne[:b] + liste_colonne[b+1:]):

b+=1

return b == len(liste_colonne) and c == len(liste_ligne)

This part of the program allows us to compare the elements of liste_ligne (or liste_colonne),
which is equivalent to comparing lines with each other (or columns). We have introduced a
variable c in order to identify which element of the list is being compared with the others. We
compare liste_ligne[c] with the elements before itself in liste_ligne (liste_ligne[:c]) and then
with the elements after itself (liste_ligne[c+1:]). In this way, we don't compare element ¢ with
itself, so we don't have to display the equality each time.

Then we do the same procedure with liste_colonne with variable b.

b ‘ Cracow University of Technology

Department of Computer Sciences

iv. Resolution

The resolution function is the final function which, using the recursive backtracking method,
will test the values in the grid and see if they meet the various conditions. If they don't, the
program returns to the last completed cell to modify it and retest the conditions, and so on to
find the correct values.

def Résolution(grille, i=0):
cote = len(grille)

if i == cote * cote:
get_final(grille)

return True if Condition3(grille) else False

x = 1 % cote

y =i // cote

if grillely] [x] != 2:
return Résolution(grille, i + 1)

for j in range(2):
ligne = grillely]
colonne = [L[x] for L in grillel
if conditionl_colonne(colonne, y, j) and conditionl_ligne(ligne, x, j) and somme_colonne(colonne, y, j) and somme_ligne(ligne, x, j):

grillelyl [x] = j
if Résolution(grille, i + 1):
return True
grillelyl[x] = 2
return False

First, we assign the variable 'cote' the length of one side of the grid. Then, we perform several
tests.

First, if 'i' equals the dimension of the grid, it means we have reached the end of the grid. We
then return True only if Condition 3 is met.

Otherwise, we assign to 'x' (which represents the columns here) the value of the remainder of
the Euclidean division of 'i' by the side, and to'y' (which represents the rows) the value of the
guotient of the Euclidean division of 'i' by the side. These assignments ensure that we never
go outside the grid.

If the cell is different from 2, then we do not modify it because it contains the base grid that
we need to complete, and we thus call the resolution function for the next cell.

If the cell is a 2, we will vary a 'j' between 0 and 2 (exclusive), which represents the value that
we will test in the cell. We then initialize our row and column and test the first three conditions
written above with this value 'j'. If the three conditions are met, we assign the value 'j' to the
cell and move on to the resolution of the next cell.

If the value 'j' does not meet the conditions, we put a 2 back in the cell while the for loop
changes the 'j' to see if the problem lies with the current cell or the previous one.

Finally, if none of these cases match, the grid is not fillable and False is returned.

def none_to_deux(grille):
for i in range(len(grille)):
for j in range(len(grille[il)):
if grille[i]l[j] is None:
grillel[il [j] = 2
return grille

. ‘ Cracow University of Technology

Department of Computer Sciences

It is easier to use Nones in the code of the interface but the code of the
Takuzu uses twos when the cell is empty. We coded the Takuzu before the interface (the

interface was not planned at the beginning) so to avoid changing all the code of the Takuzu
we created this function.

def get_final(grille):
return grille

This a function which returns the grid to use for the code of the interface.

b ‘ Cracow University of Technology

Department of Computer Sciences

Results

Finishing the implementation, we run our code on the terminal.

First, we will have a frame that enables the user to enter his name and then choose if he wants
to play some games or read their rules.

Game Selection - Welcome Kenza — O X

r M Hello Kenza! Choose a game to play:

Snakezuku - 0 x
Play Snake

Hello! Please enter your name: Snake Rules

Play Takuzu
Continue Takuzu Rules

If the users choose to play the snake game, here is the frame that they will get. With some
apple images for feeding the snake and amusing music. And, to the right if the users choose
to know more about the Snake Rules.

Snake Game - o x

Score: 0 High Score: Snake Rules x

() The objective of the Snake

g game is to eat the food (red
dot) with the snake's head.
The snake grows longer as it
eats food, and the game ends
if the snake collides with itself
Use arrow keys to control the
snake's direction.
‘u’ for up; 'd' for down; 'I' for
left and 'r' for right.

OK

Cracow University of Technology

Department of Computer Sciences

It is quite the same if the users choose to play Takuzu Game and read the rules.

Takuzu Grids [Takuzu Rules X
1 0 Q The objective of the Takuzu
0 game is to fill the grid with 0
and 1 according to the
0 following rules:
1 1 0 - Each row and column must
contain an equal number of 0
and 1.
vz - No more than two identical
numbers can be adjacent
Back to Main Menu horizontally or vertically.

- The grid should not contain
any identical rows or columns.

But here the user can go back to the main Menu and restart the game, which is very useful.

Cracow University of Technology

Department of Computer Sciences

Summary

To conclude, this project enabled us to apply the knowledge we had acquired throughout the
semester by developing an application where users can choose to play either Snake or Takuzu.
The application features a user-friendly graphical interface and incorporates music within the
games, enhancing the overall user experience. This project not only solidified our
understanding of Python programming but also provided practical experience in game
development, GUI design, and multimedia integration.

This project could also serve as the initial version of a more extensive mini-games application.
The aim is to eventually expand this application to include a variety of other mini games,
transforming it into a general-purpose gaming platform. By starting with Snake and Takuzu,
we have established a solid foundation and framework that can be built upon to add more
games in the future.

. ‘ Cracow University of Technology

Department of Computer Sciences

References

[1] Snake Game created by @TokyoEdTech

https://gist.github.com/wynand1004/ec105fd2f457b10d971c09586ec44900

[2] Snake Game

https://fr.wikipedia.org/wiki/Snake (genre de jeu vid%C3%A90)

[3] Takuzu Game

https://fr.wikipedia.org/wiki/Takuzu

[4] The musics in the games are from this website

https://downloads.khinsider.com/game-soundtracks/album/dr.-kobushis-labyrinthine-
laboratory-linux-macos-windows-gamerip-2022

https://gist.github.com/wynand1004/ec105fd2f457b10d971c09586ec44900
https://fr.wikipedia.org/wiki/Snake_(genre_de_jeu_vid%C3%A9o
https://fr.wikipedia.org/wiki/Takuzu
https://downloads.khinsider.com/game-soundtracks/album/dr.-kobushis-labyrinthine-laboratory-linux-macos-windows-gamerip-2022
https://downloads.khinsider.com/game-soundtracks/album/dr.-kobushis-labyrinthine-laboratory-linux-macos-windows-gamerip-2022

	Abstract
	Introduction
	1. Aim
	2. Scope
	3. Methodology

	Theoretical part
	1. Brief history of Takuzu and Snake games
	2. Rules of the games

	Practical part
	1. Interface
	2. Snake
	3. Takuzu
	i. Condition 1
	ii. Condition 2
	iii. Condition 3
	iv. Resolution

	Results
	Summary
	References

