

Cracow University of Technology

Department of Computer Sciences

Python – Erasmus

Ac. Year 2023/2024

Project

Snakezuku

Team’s Member

Kenza Bennani

Anissa Bustarret—Labaali

Déborah Renard

Cracow University of Technology

Department of Computer Sciences

Contents

Abstract .. 3

Introduction.. 4

1. Aim ... 4

2. Scope .. 4

3. Methodology .. 4

Theoretical part .. 6

1. Brief history of Takuzu and Snake games .. 6

2. Rules of the games ... 6

Practical part .. 8

1. Interface ... 8

2. Snake .. 11

3. Takuzu .. 13

i. Condition 1 ... 13

ii. Condition 2 ... 14

iii. Condition 3 ... 15

iv. Resolution ... 16

Results .. 18

Summary .. 21

References .. 22

Cracow University of Technology

Department of Computer Sciences

Abstract

This project presents the development of two interactive games, Snake and Takuzu, using

Python. We designed an easy-to-use interface that lets players choose which game they want

to play.

Our goal was to develop something entertaining while integrating all the knowledge we have

acquired during the semester and learning more about game development.

This report covers a general introduction which begins with an introduction outlining the aim,

scope, and methodology of our project. Then, the theoretical part provides a brief history and

the rules of Takuzu and Snake. Last but not least, the practical part details the development

of the user interface and the implementation of both games.

Cracow University of Technology

Department of Computer Sciences

Introduction

1. Aim

The goal of this project is to develop an application that allows users to choose between

playing Snake and Takuzu through an interactive interface. The interface not only lets users

select their preferred game but also provides access to the rules for both games. For Snake,

an automatic point counter is integrated to keep track of the player's score. For Takuzu, if the

player is unable to solve the puzzle, they have the option to view the solution. This project

aims to create an enjoyable experience by combining game development with practical

 programming skills.

2. Scope

This project covers several keys that we have used to implement the game:

→ Knowledge: Crafting the rules, objectives, and overall gameplay experience for each

game.

→ Implementation: Writing the code using Python. Splitting the code into 3 files and

focusing on creating functional and efficient functions to play the game in a graphical

user interface.

→ Testing and Debugging: Fix bugs, ensuring the games run smoothly and without

errors.

→ Documentation: Providing comprehensive documentation, including user

instructions, code comments, and this project report, to facilitate understanding.

3. Methodology

We coded in Python directly on text files which we then executed directly via the terminal.

We have split our code into 3 files : interface3.py in which the general interface and the takuzu

interface are coded ; takuzu3.py in which the takuzu is coded without its interface and

snake3.py in which the snake and its interface is coded.

We want to raise an important point. In the beginning, we wanted to implement only a

snake game for our project, but we realized that we had enough time to implement a sort of

mini games project so we decided to add the Takuzu game. This is why we have a file with

the snake game and its own interface and two different files : one with the Takuzu game and

another with its interface including also the main interface of the game.

For the interface we used only one library:

Cracow University of Technology

Department of Computer Sciences

- tkinter : comprehensive library used for creating graphical user

interfaces with buttons, menus, and other widgets. We used it to code the general

interface and the interface of takuzu. We also imports the messagebox module from

the tkinter library, which provides various types of message boxes for displaying

information, warnings, and errors.

- The pygame library, which is a set of Python modules designed for writing video

games, including graphics and sound libraries

For the snake we used several librairies :

- turtle : library focused on creating graphics and drawings by controlling a cursor (the

"turtle") on a canvas. We used it to create the interface of the Snake game.

- time : provides functions for handling time-related tasks. We used it to give the player

time to change the direction of the snake and to restart the game.

- random : generates random numers. We used it to generate a random food for the

snake.

- Image: This imports the Image module from the PIL (Python Imaging Library) package,

which allows for image processing tasks such as opening, manipulating, and saving

various image file formats.

For the takuzu we used only one library :

- numpy : used for numerical computing, providing support for large, multi-dimensional

arrays and matrices, along with a vast collection of mathematical functions to operate

on these arrays efficiently. We used it to generate arrays.

Cracow University of Technology

Department of Computer Sciences

Theoretical part

1. Brief history of Takuzu and Snake games

Snake Game

The Snake game originated as an arcade game called Blockade, released in 1976 by

Gremlin. It gained widespread popularity with its inclusion on Nokia mobile phones in

1997, becoming a classic. The first known coding of a digital version was in 1976 on

arcade machines, and it has since been implemented on various platforms, including

PCs and mobile devices. [2]

Takuzu Game

Takuzu, also known as Binary Puzzle, is a logic puzzle game involving a grid where

players fill in cells with 0s and 1s according to specific rules. It does not have a clear,

singular origin like Snake, but its concept is rooted in binary and logic puzzles, gaining

popularity in puzzle magazines and online platforms in the early 21st century. The first

coded versions appeared on puzzle websites in early 2000s and apps as its popularity

grew. [3]

2. Rules of the games

Snake

In the Snake game, the player controls a growing line, or "snake," that moves around

the screen. The objective is to eat food items that appear at random positions, which

causes the snake to grow longer. The game ends if the snake collides with itself. In our

case, when the user plays left and right successively only if the snake has eaten at least

2 items.

Takuzu

The goal is to fill the grid with 0s and 1s according to these rules:

- Each row and column must contain an equal number of 0s and 1s.

- No more than two of the same number can be adjacent vertically or horizontally.

- Each row and column must be unique, meaning no two rows or columns can be

identical.

Cracow University of Technology

Department of Computer Sciences

Practical part

1. Interface

The code interface3 consists of a class MainApplication and a class TakuzuInterface.

In the first class, MainApplication, we first have the function for setting up the entry window.

As soon as the first window opens, welcome music starts playing.

 The player can then enter his or her name before playing.

Then click on “Continue” to display the main menu, which allows, with the help of buttons, to

choose the game we want to play or to see the rules of the said games thanks to a messagebox.

→ Choice number 1: "Play Snake"

Initializes and starts, with stopping music, the Snake game by creating an instance of

SnakeGame and calling its run method.

→ Choice number 2: "Play Takuzu"

Initializes a new window , with stopping the music, the Takuzu game by creating an instance

of TakuzuInterface.

Cracow University of Technology

Department of Computer Sciences

Regarding the second class, TakuzuInterface, similarly, we first have an __init__ function that

creates a Takuzu game window using the create_takuzu_grid function. This window also

contains, in addition to the Takuzu grid, a button that solves the Takuzu. In this window we

also have a new music starting.

create_takuzu_grid:

This function takes the initial grid and transforms each cell with a None value into an

editable cell. Thus, the player can attempt to solve the Takuzu on this main window.

solve_grid:

If the "Solve Grid" button is pressed, then the solve_grid function comes into play. It uses

three functions from the Takuzu3 file:

- non_to_deux: transforms the None values in the initial grid into twos.

- Résolution_: which solves the Takuzu.

- get_final: retrieves the new solved grid.

Cracow University of Technology

Department of Computer Sciences

Once these three functions are finished, the new solved grid is

displayed using the show_additional_grid function.

show_additional_grid:

This function creates a new window showing the solution grid (non-editable). The player can

compare their grid with the result grid.

go_back:

This function simply takes you back to the main menu, with the old music of course.

Finally,

Initializes the main tkinter root window and starts the MainApplication. Runs the tkinter main

loop to keep the application running.

Cracow University of Technology

Department of Computer Sciences

2. Snake

For the implementation of the game, we have been inspired by a gitHub code [1]. But we have

modified almost everything, and we have added some amusing functionalities such as images

and music. Indeed, we have used Pygame library for background music.

The SnakeGame class is responsible for initializing the game, handling user inputs, updating

the game state, and managing game elements such as the snake and the food. The main

components and methods of this class are described below.

This part of the code is used to replace the head of the snake by a real image of a snake’s head

and a real image of the food’s snake (here an apple).

The __init__ method sets up the game environment, initializes variables, loads background

music, and creates the initial game objects.

The methods go_up, go_down, go_left, and go_right change the direction of the snake based

on keyboard inputs. These methods are bound to specific keys using the onkeypress method.

The ‘move’ method updates the position of the snake's head based on its current direction. It

also handles the screen wrap-around feature, ensuring the snake reappears on the opposite

side if it crosses the border.

Cracow University of Technology

Department of Computer Sciences

The play_game method is the main game loop. It continuously updates

the game state, checks for collisions, moves the snake, updates the score, and redraws the

game screen.

The change_food_position method changes the position of the food to a new random location

on the screen, ensuring it does not overlap with the snake's body.

The add_segment method adds a new segment to the snake's body, which occurs when the

snake eats the food.

The reset_game method resets the game state when the snake collides with itself. It clears

the snake's body, resets the score, and repositions the head.

The run method starts the game by calling the play_game method.

The main function initializes an instance of the SnakeGame class and calls its run method to

start the game.

Cracow University of Technology

Department of Computer Sciences

3. Takuzu

i. Condition 1

As a reminder, condition 1 concerns the number of 1s and 0s allowed next to each other in a

row.

This function is a boolean funtion which takes as arguments a column in the form of a list, a

value for the cell to be changed and the index of the cell in this list. First we change the cell in

question by the value and check whether the condition will be validated with this change. The

function allows us to scan the column to see if it contains more than two 1s or two 0s next to

each other in a row. We vary a variable k up to the size of line-3 so that we are not out of the

table when we look at the k-th, k+1st and k+2nd cell.

This is the same functions but for lines.

Cracow University of Technology

Department of Computer Sciences

ii. Condition 2

Condition 2 ensures that there are as many 1s and 0s in the same row or column

As in the previous condition, this is a boolean function and we will change the selected cell to

a given value to test whether the condition is validated with this change. In this condition we

initialise 2 counters which will count respectively, nbr1, the number of 1s and nbr0 the number

of 0s. However, if more than half of the cells in a column contain 1s (or 0s) then the number

of 1s (or 0s) are different, the function returns false which means that the grid does not meet

the takuzu conditions.

We do the same for the lines.

Cracow University of Technology

Department of Computer Sciences

iii. Condition 3

Condition 3 allows us to check that the rows and columns are different from each other.

To do this, we first create a list (ligne_liste) which will contain all the lines in the grid. For each

y, we vary the x so we can add all the cells of the line in the list. When a line is finished, we

move on to the next one by adding 1 to y and so on. Finally, we reset our coordinates to (0,0)

and then we do the same for the columns.

We do the same for the columns with liste_colonne. But this time we vary the y for each x.

This part of the program allows us to compare the elements of liste_ligne (or liste_colonne),

which is equivalent to comparing lines with each other (or columns). We have introduced a

variable c in order to identify which element of the list is being compared with the others. We

compare liste_ligne[c] with the elements before itself in liste_ligne (liste_ligne[:c]) and then

with the elements after itself (liste_ligne[c+1:]). In this way, we don't compare element c with

itself, so we don't have to display the equality each time.

Then we do the same procedure with liste_colonne with variable b.

Cracow University of Technology

Department of Computer Sciences

iv. Resolution

The resolution function is the final function which, using the recursive backtracking method,

will test the values in the grid and see if they meet the various conditions. If they don't, the

program returns to the last completed cell to modify it and retest the conditions, and so on to

find the correct values.

First, we assign the variable 'cote' the length of one side of the grid. Then, we perform several

tests.

First, if 'i' equals the dimension of the grid, it means we have reached the end of the grid. We

then return True only if Condition 3 is met.

Otherwise, we assign to 'x' (which represents the columns here) the value of the remainder of

the Euclidean division of 'i' by the side, and to 'y' (which represents the rows) the value of the

quotient of the Euclidean division of 'i' by the side. These assignments ensure that we never

go outside the grid.

If the cell is different from 2, then we do not modify it because it contains the base grid that

we need to complete, and we thus call the resolution function for the next cell.

If the cell is a 2, we will vary a 'j' between 0 and 2 (exclusive), which represents the value that

we will test in the cell. We then initialize our row and column and test the first three conditions

written above with this value 'j'. If the three conditions are met, we assign the value 'j' to the

cell and move on to the resolution of the next cell.

If the value 'j' does not meet the conditions, we put a 2 back in the cell while the for loop

changes the 'j' to see if the problem lies with the current cell or the previous one.

Finally, if none of these cases match, the grid is not fillable and False is returned.

Cracow University of Technology

Department of Computer Sciences

It is easier to use Nones in the code of the interface but the code of the

Takuzu uses twos when the cell is empty. We coded the Takuzu before the interface (the

interface was not planned at the beginning) so to avoid changing all the code of the Takuzu

we created this function.

This a function which returns the grid to use for the code of the interface.

Cracow University of Technology

Department of Computer Sciences

Results

Finishing the implementation, we run our code on the terminal.

First, we will have a frame that enables the user to enter his name and then choose if he wants

to play some games or read their rules.

If the users choose to play the snake game, here is the frame that they will get. With some

apple images for feeding the snake and amusing music. And, to the right if the users choose

to know more about the Snake Rules.

Cracow University of Technology

Department of Computer Sciences

It is quite the same if the users choose to play Takuzu Game and read the rules.

But here the user can go back to the main Menu and restart the game, which is very useful.

Cracow University of Technology

Department of Computer Sciences

Summary

To conclude, this project enabled us to apply the knowledge we had acquired throughout the

semester by developing an application where users can choose to play either Snake or Takuzu.

The application features a user-friendly graphical interface and incorporates music within the

games, enhancing the overall user experience. This project not only solidified our

understanding of Python programming but also provided practical experience in game

development, GUI design, and multimedia integration.

This project could also serve as the initial version of a more extensive mini-games application.

The aim is to eventually expand this application to include a variety of other mini games,

transforming it into a general-purpose gaming platform. By starting with Snake and Takuzu,

we have established a solid foundation and framework that can be built upon to add more

games in the future.

Cracow University of Technology

Department of Computer Sciences

References

[1] Snake Game created by @TokyoEdTech

 https://gist.github.com/wynand1004/ec105fd2f457b10d971c09586ec44900

[2] Snake Game

https://fr.wikipedia.org/wiki/Snake_(genre_de_jeu_vid%C3%A9o)

[3] Takuzu Game

https://fr.wikipedia.org/wiki/Takuzu

[4] The musics in the games are from this website

https://downloads.khinsider.com/game-soundtracks/album/dr.-kobushis-labyrinthine-

laboratory-linux-macos-windows-gamerip-2022

https://gist.github.com/wynand1004/ec105fd2f457b10d971c09586ec44900
https://fr.wikipedia.org/wiki/Snake_(genre_de_jeu_vid%C3%A9o
https://fr.wikipedia.org/wiki/Takuzu
https://downloads.khinsider.com/game-soundtracks/album/dr.-kobushis-labyrinthine-laboratory-linux-macos-windows-gamerip-2022
https://downloads.khinsider.com/game-soundtracks/album/dr.-kobushis-labyrinthine-laboratory-linux-macos-windows-gamerip-2022

	Abstract
	Introduction
	1. Aim
	2. Scope
	3. Methodology

	Theoretical part
	1. Brief history of Takuzu and Snake games
	2. Rules of the games

	Practical part
	1. Interface
	2. Snake
	3. Takuzu
	i. Condition 1
	ii. Condition 2
	iii. Condition 3
	iv. Resolution

	Results
	Summary
	References

