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1 Abstract

Egyptian hieroglyphs are one of the oldest writing systems in human history,
consisting of thousands of hieroglyphic symbols used for over 3,000 years.!!]
Unlike modern alphabets, hieroglyphs are symbolic, which makes them an in-
teresting topic for computational interpretation, especially in the field of Natural
Language Processing.

The purpose of this work is to build a system that recognizes Egyptian glyphs
in images and convert them into their equivalent English words.

The approach is carried out using classical image processing techniques for fea-
ture extraction. These extracted features are classified by a trained model and
afterwards, the transliterated terms are matched to the English equivalents.

Our system was able to successfully recognize, transliterate and translate a
small set of assembled hieroglyphic signs.



2 Introduction

2.1 Aim

The aim of this project is to train a model capable of reading a sequence of
individual glyphs placed in an image. In addition, these identified pictograms
are transliterated and translated.

2.2 Scope
This project focuses on the recognition of individual Egyptian pictograms on a

sufficient contrasting background. The model is trained on the following hiero-
glyphs:
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The system is designed specifically for the transliteration and translation of
Egyptian divinity names into their respective English names. The recognition
of sentence translation is beyond the scope of our implementation.

2.3 Methodology

The implementation was achieved through image processing techniques, includ-
ing grayscale conversion, Gaussian blurring, and Histogram of Oriented Gra-
dients (HOG). The resulting features are classified using a Logistic Regression
model.

In the next step, the detected symbols are transliterated based on the model’s
output. Finally, fuzzy string matching is used to map the transliterated terms
to their English equivalents.



I. Theoretical Part

3 Definitions and Steps

3.1 Image Processing Basics

In order to increase the quality and discriminative power of the Histogram of
Oriented Features (HOG), we took several steps to preprocess the samples in
the dataset.

3.1.1 Resizing

HOG expects a fixed aspect ratio, which means that the relationship between
width and height is proportional, as the feature vector size depend on the image
dimensions.[?!

3.1.2 Grayscale Conversion

Since a color image has 3 channels (red, green and blue), computing HOG in all
three would be computationally expensive. This high dimensionality is reduced
with the grayscale to one channel, preserving the edge information and allowing
HOG to just focus on geometric structure. !

3.1.3 Histogram Equalization

The equalization of the histogram, or frequency of intensity levels, leads to more
uniform adjusted pixel intensities. In other words, the image contrast is more
uniform, has a higher contrast and is easier to process by feature descriptors.!

Figure 1: Not equalized picture. Figure 2: Equalized picture.



3.1.4 Noise Removal

In our case we employed Gaussian blur for noise removal. This classic technique
reduces the unwanted noise in a frame by averaging neighboring pixels using a
Gaussian function. At the same time, it preserves the edges and makes contours

cleaner. !
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Figure 4: Blurred picture.
Figure 3: Not blurred picture. & P

3.2 Feature Extraction With HOG

The Histogram of Oriented Gradients is a feature descriptor used for image pro-
cessing to detect objects or patterns, characterized by capturing the distribution
of gradient orientations in localized image regions.!¢!

1755 1756 1757 1758 1759 1760 1761 1762 1763 target

0.368727 0.084597 0.051519 0.058797 0.234477 0.024358 0.056171 0.323352 0.162896 G1
0.167880 0.016888 0.063458 0.028240 0.086927 0.268027 0.268027 0.268027 0.1890149 G1
0.341430 0.241406 0.179246 0.098209 0.210073 0.000000 0.000000 0.149929 0.182183 G1
0.146512 0.174489 0.269308 0.195522 0.269308 0.269308 0.146588 0.189456 0.050232 G1
0.205384 0.096347 0.031477 0.056259 0.103416 0.177207 0.191659 0.098022 0.313693 G1

0.219285 0.242186 0.055931 0.027106 0.127643 0.016266 0.086485 0.242186 0.150634 wz4
0.238142 0.285875 0.089166 0.024682 0.027138 0.005463 0.000000 0.056310 0.151475 wa4
0.197660 0.216700 0.053246 0.204677 0.247444 0.147598 0.202498 0.213175 0.049592 wz4
0.194104 0.048073 0.014485 0.013363 0.050692 0.045374 0.087874 0.120575 0.222267 wa4

0.352921 0.078366 0.050034 0.026607 0.217567 0.064905 0.036489 0.012515 0.179903 wz4

Figure 5: Visualization of a data frame with HOG features.



This feature descriptor returns a structured vector of numerical values which
can be used by a model to classify a given image, in our case, a hieroglyph.

3.3 Classification with Logistic Regression

Our dataset contains over 50 distinct hieroglyph classes in our dataset, which
are used to train a multinomial logistic regression model. In contrast to binary
logistic regression, which applies the sigmoid function, the multi-class logistic
regression uses the softmax function to assign a probability to each possible class
label. This softmax function distributes the probabilities between the multiple
classes, so that their sum equals one.

The model measures the difference between the predicted probability and the
actual class, called cross-entropy loss. The aim of the model is to reduce this
loss. Another important characteristic of this classification algorithm is the
possibility of giving weights in order to minimize the cross-entropy loss.!”)
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Figure 6: Multinomial Logistic Regression.'

3.4 Hieroglyph Recognition and Transliteration

Given that the input is an image containing individual hieroglyphs, we applied
Canny Edge Detection and contour detection in order to identify the outlines
of the connected pictograms. Afterward, the detected contours are extracted
and each extracted region undergoes the same image processing pipeline as
the individual pictographic signs, and is subsequently classified by the trained
model. These encoded character representations are concatenated to form a
complete output.

3.5 Fuzzy String Matching

Due to the discrepancy between Egyptian deity names in English and their
transliteration from pictographic signs, we implemented the fuzzy string match-
ing to find close matches for the transliterated deity name. If the character
representation is close enough to the modern English name, the matched out-
put is mapped to the corresponding standard English deity name.

mage Source


https://medium.com/@jshaik2452/multi-class-logistic-regression-a-friendly-guide-to-classifying-the-many-4a590c2e6c26

II. Practical Part

4 Practical Implementation

4.1 Data Source and Implementation

The labeled images and the dictionary with the transliterations originate from

the project Rozpoznawanie hieroglify, available at https://ii.pk.edu.pl/~rkycia/
classes/2024/lato/NLPNiestacjonarne.html, in which this project is based

on.

The only modification made was unification of the images labeled with the key
G35 to the key G1. Upon review, we concluded that both sets of images were

in reality the same heroglyphic symbol.

The structure of the train directory, containing the images with the labels, was
equivalent to the provided keys, what simplified the data preprocessing.

letters = { train/
nGLn o :ovan, Aa1/
O U D2/
nzar oo ongn, D21/
"D36" : "a", D35/
"G43" : ut, D36/
nZ7h o, D4/
"D58" : "b", D46/
Q3" ovpn, D58/
n"go"  : “f", D60/
.3

4.2 Feature Extraction

The corresponding label was assigned to each frame, based on the directory in
which they were stored. This was followed by the creation of a pandas data
frame, containing the path to the image and the respective target.

raw_df = pd.DataFrame({'image': image_paths, 'label': labels})

This function was created with the utilization of OpenCV and Scikit-Image
libraries to apply the preprocessing steps discussed in the theoretical part and
extract the HOG features. The parameters chosen for the HOG are necessary
to obtain cleaner, more robust and discriminative features for each glyph. This
method was applied to each image in the first data frame, resulting in a new
data frame, which has the corresponding HOG features and label.

def extract_hog_features(image_path):
try:
image = cv2.imread(image_path)
if image is None:


https://ii.pk.edu.pl/~rkycia/classes/2024/lato/NLPNiestacjonarne.html
https://ii.pk.edu.pl/~rkycia/classes/2024/lato/NLPNiestacjonarne.html

raise FileNotFoundError(f"Image not found at {image_pathl}")
except:
print(f"Image not found at {image_path}")
return None
image = cv2.resize(image, (64, 64),
interpolation=cv2.INTER_AREA)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = cv2.equalizeHist (image)
image = cv2.GaussianBlur(image, (5, 5), 0)
return hog(image, orientations=9,
pixels_per_cell=(8, 8),
cells_per_block=(2, 2),
block_norm='L2-Hys',
transform_sqrt=True)

4.3 Baseline Model and Class Imbalance

After examining the data distribution, we found that the number of frames
corresponding to each hieroglyphic symbol was not well distributed, being the
maximum count 448 for the label N35 and the minimum 6 for the target D60.
This could lead the logistic regression to favor the majority class to minimize
the overall error. Nevertheless, we decided to take a look at the performance
of our model with this kind of data and defining the class weights as balanced,
obtaining an accuracy of 98%.

300

o
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Figure 7: Distribution of class labels.

Even though this is a priori a good result, we can observe that some classes
underperformed:

label precision recall fl-score  support
V31 0.97 1.00 0.98 30
V4 1.00 1.00 1.00 4



Wi1 0.50 1.00 0.67 1
w24 0.83 0.71 0.77 7
X1 1.00 1.00 1.00 50
z4 1.00 1.00 1.00 3
z7 1.00 1.00 1.00 3

4.4 Balancing with KMeansSMOTE

With the aim of having a better distribution of the data, we decided to use over
sampling with Synthetic Minority Over-sampling Technique (SMOTE), which
creates synthetic examples applying KMeansSMOTE from the imblearn library.
This type of over-sampling technique adds clustering with K-Means before im-
plementing the usual SMOTE technique.[® This creates more meaningful and
better distributed synthetic samples. Once applied, we observe that the count
of all class labels skews between 448 and 450.

smote = KMeansSMOTE(
sampling_strategy='not majority',
cluster_balance_threshold=0.001,
random_state=42)

X_balanced, y_balanced = smote.fit_resample(x, y)

4.5 Evaluation after Over-sampling

This new data, composed by our original and synthetic data, was split and fit
into the logistic regression model, which shows the following results:

label precision recall fl-score support
Aal 1.00 0.99 0.99 78
D2 1.00 1.00 1.00 103
D21 1.00 0.97 0.98 87
D35 1.00 1.00 1.00 93
D36 1.00 1.00 1.00 95
D4 1.00 1.00 1.00 91
D46 1.00 1.00 1.00 98
D58 1.00 0.99 1.00 105
D60 1.00 1.00 1.00 85
E1l 1.00 1.00 1.00 87
E23 1.00 1.00 1.00 93
E34 1.00 1.00 1.00 81
F31 1.00 1.00 1.00 74
F32 1.00 1.00 1.00 90
F34 1.00 1.00 1.00 102
G1 0.99 0.99 0.99 82
G17 1.00 1.00 1.00 75
G25 1.00 1.00 1.00 93
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G39 1.00 0.99 0.99 94
G4 1.00 1.00 1.00 88
G43 1.00 1.00 1.00 100
G5 0.99 1.00 0.99 87
T10 1.00 1.00 1.00 90
I9 1.00 1.00 1.00 97
M17 0.99 0.99 0.99 84
M23 0.99 1.00 0.99 85
N1 1.00 0.99 0.99 87
N29 1.00 1.00 1.00 101
N35 0.98 1.00 0.99 86
N37 1.00 1.00 1.00 98
01 1.00 1.00 1.00 95
034 1.00 1.00 1.00 81
04 1.00 1.00 1.00 7
Q1 1.00 1.00 1.00 81
Q3 1.00 1.00 1.00 85
529 1.00 1.00 1.00 87
S34 1.00 1.00 1.00 86
U156 1.00 1.00 1.00 88
U33 1.00 1.00 1.00 95
V13 1.00 1.00 1.00 105
V28 1.00 1.00 1.00 82
V31 1.00 1.00 1.00 92
\'ES 1.00 1.00 1.00 87
Wil 1.00 1.00 1.00 79
w24 0.98 1.00 0.99 87
X1 0.99 1.00 0.99 89
z4 1.00 1.00 1.00 108
z7 1.00 1.00 1.00 95

Moreover, with the implementation of a 5-fold cross-validation using this well
distributed data we achieved a score of 99% as mean accuracy.

4.6 Sequential Glyph Processing

It is necessary to apply the same steps of image processing to the new glyphs
sequence which is being processed.

def predict_heroglyphs_series(image_path, model):
img = cv2.imread(image_path)
if img is None:
raise FileNotFoundError (f"Image not found at {image_pathl}")

im_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

im_gray = cv2.equalizeHist(im_gray)

11



im_gray_blur = cv2.GaussianBlur(im_gray, (5, 5), 0)

Further steps are to be done in order to retrieve the individual hieroglyphs from
the sequence. We achieved this finding the contours, which helps locate the
boundaries of each glyph in the image, filtering small noise in form of small
contours and sorting the founded areas in aleft-to-right order.

kernel = cv2.getStructuringElement (cv2.MORPH_RECT, (5, 5))
edges = cv2.morphologyEx(edges, cv2.MORPH_CLOSE, kernel)

ctrs, hier = cv2.findContours(edges, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

filtered_ctrs = []
for ¢ in ctrs:
if cv2.contourArea(c) > 100:
epsilon = 0.01 * cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, epsilon, True)
filtered_ctrs.append(approx)

bboxes = [cv2.boundingRect(c) for c¢ in filtered_ctrs]
sorted_bboxes = sorted(bboxes, key=lambda b: b[0])

Processed Image
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Figure 8: Recognizing of the individual glyphs for the word *Tutankhamun’.

4.7 'Transliteration and Name Matching

The identified glyphs are extracted and normalized to the same format expected
by our trained logistic regression model.

hieroglyphic = []

text = []

positions = []

for _, i_bboxes in enumerate(sorted_bboxes):

12



X, ¥y, w, h = i_bboxes

aspect_ratio = w / float(h)

if h > 16 and w > 16 and 0.2 < aspect_ratio < 5:
cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 3)
roi = im_gray_blur[y:y+h, x:x+w]
roi = cv2.resize(roi, (64, 64),

interpolation=cv2.INTER_AREA)
predict_single_hieroglyph(roi, model)

nbr

positions.append((x, y, w, h, str(nbr)))
hieroglyphic.append(letters.glyphs[str(nbr)])
text.append(letters.letters[str(nbr)])

The following method predicts the class of the given hieroglyph image.

def predict_single_hieroglyph(img, model):
img_resized = img

features = hog(img_resized,
orientations=9,
pixels_per_cell=(8, 8),
cells_per_block=(2, 2),
block_norm='L2-Hys',
transform_sqrt=True)

features = features.reshape(1l, -1)

prediction = model.predict(features)
return prediction[0]

Word:

tutanchimn

Hieroglyphic:

Ao alN

Figure 9: Transliteration of the term ’tutanchmin’.
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Taking the predicted word which can be compared with the listed divinity
names. Taking into account that the transliteration does not always match
1: 1 the modern English name, the fuzzy string matching of the diffiib library
can be employed to achieve this lightweight translation. Through the use of
SequenceMatcher from the same library, the get_close_matches method calcu-
lates a ratio which compares the longest common subsequence between the two
strings.[9]

divinities = ['Cheops', 'Osiris', 'Cleopatra’,
'Tutankhamun', 'Ramses', 'Bastet',
'Anubis', 'Nefertiti']

divinities_lower = [x.lower() for x in divinities]

def match_query(query):
matches = get_close_matches(query.lower(),
divinities_lower, n=1, cutoff=0.6)
if matches:
index = divinities_lower.index(matches[0])
return divinities[index]
return "No match found"

translation:

Tutankhamun

Figure 10: Matching of the transliteration to "Tutankhamun’.

4.8 Results

Our trained model was able to identify and correctly transliterate 7 out of 8
given examples of assembled hieroglyphs. In our context, “correctly” means
that the model assigns the expected label to each glyph image. The translation
yielded an accuracy of 6 out of 8, where the failed translations could not be
translated due to the difference of the Egyptian terms to the modern English
equivalents.

5 Summary

The objective of this project was successfully achieved. The system was able
to recognize and transliterate Egyptian hieroglyphs as intended. This project
provided us with valuable insights into the intersection of image preprocessing
and natural language processing. Beyond visual recognition, the implementa-
tion treats the individual glyphs as tokens, does transliteration, fuzzy string

14



matching and sequence reconstruction, fundamental tasks in natural language
processing.

Indeed there is still room for improvement. It could be possible to apply a better
contour recognition in order to process other images with not so high contrasting
background, or expand the model to process other hieroglyphs. This shows us
that this interesting combined field of computer sciences always offers room for
new ideas and improvements.

15
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