Y'Y

Politechnika Krakowska
im. Tadeusza Kosciuszki

JSC “Tadeusz Kosciuszko Krakow University of Technology”
Faculty of Computer Science and Telecommunications

Natural language processing (NLP)
Sarcasm Detector Project Report

Performed by:
Danel Kanbakova,
Zhanel Aldan,
Aruzhan Satybaldy

Teachers:

Radostaw Kycia

Krakow, 2025

wi %] Cracow University of Technology _g}:%_

Department of Computer Sciences

Table of content:
) N o 11 72 Yo AUUU OO U URT RSP

B 170 1< TSP
2 I\ 11 T Ta (o) o Y.y VA RSP RTRR

R TR 1 TST) (] (o7 1 o o ARSI
3.1 Supervised Learning AIGOTIRIMSccoeiiiiiiiiiieeiie e
3.2 Neural NetWork MOAELScc.oevuiiiiiiiiieiiieiie ettt ennees
3.3 Transformer-based MOEISceoviiiiiieiiieiiecie ettt eve e ens

4. PractiCal Ptccuiiiiiiiiicie ettt ettt et et e et e s ta e et aesateenbeesnbeesaennaeeenbeens

4.1 Data COlIECHION .oiiiieiiieiieie ettt ettt et e et e st eeteesaeeenneenes
4.2 Data PIrePrOCESSING .ooiieciieiieiiieitieeieerite et eetteeteestteebeessaeeseesseeesseessseenseessseenseenses
4.3 Model Implementation ccceeeiiieiiiiieeieece e e
4.4 Model EVAlUALIONccccuiiiiiiieciiiecee ettt ettt e et e e tae e s taeesaaaesnsaeeenseeenns

Cracow University of Technology

% Department of Computer Sciences

Sarcasm Detector Project Report

1. Abstract

Detecting sarcasm in text is a challenging natural language processing task with
applications in sentiment analysis and human-computer interaction. This project aims to develop
and compare machine learning and deep learning models for sarcasm detection using a balanced
Kaggle dataset. The workflow includes data exploration, preprocessing, feature extraction, model
training, and evaluation. Transformer-based models demonstrated superior performance compared
to traditional and recurrent neural network approaches.

2. Introduction

2.1 Aim
The main objective is to design and evaluate several models capable of identifying sarcasm
in text data, thereby improving automated understanding of nuanced language.

2.2 Scope
The project covers dataset acquisition, text preprocessing, model building with supervised
learning, neural networks, and transformers, as well as model assessment using appropriate metrics.

2.3 Methodology

Implemented in Python using Jupyter Notebook and libraries including Pandas, NLTK,
Scikit-learn, TensorFlow/Keras, and Hugging Face Transformers. The approach involves cleaning
raw text, extracting features, training diverse models, and rigorous evaluation.

3. Theoretical Part

In this project, we explored multiple modeling approaches for sarcasm detection, each
bringing distinct strengths and challenges.

3.1 Supervised Learning Algorithms

Logistic Regression is a linear model used for binary classification that models the log-
odds of the target class as a linear combination of input features. Its simplicity and
interpretability make it a common baseline in NLP tasks. Despite its linear nature, with
appropriate feature engineering (such as TF-IDF), it can capture important textual signals related
to sarcasm. It requires relatively little computational power and trains quickly, making it a
practical choice for large datasets.

Cracow University of Technology

% Department of Computer Sciences

Gradient Boosting Machines (GBM), specifically implementations like XGBoost or
LightGBM, build an ensemble of decision trees iteratively, where each new tree corrects errors
made by previous ones. This method excels in capturing complex, nonlinear relationships in
data, such as the subtle contextual cues of sarcasm. Gradient Boosting models also provide
feature importance scores, which can help interpret which words or patterns contribute most to
sarcasm detection. Regularization parameters and tree depth control allow for mitigation of
overfitting, which is critical in dealing with noisy text data.

3.2 Neural Network Models

Long Short-Term Memory (LSTM) networks are designed to solve the vanishing
gradient problem inherent in standard RNNs, enabling them to remember information over
longer sequences. This capability is essential in sarcasm detection, where the meaning can
depend on the relationship between words far apart in a sentence or paragraph. Our LSTM
architecture included an embedding layer that transforms words into dense vector
representations, capturing semantic similarity. Dropout layers were added to reduce overfitting,
which is common in deep networks trained on limited samples.

Gated Recurrent Units (GRU) offer a simplified alternative to LSTMs with fewer
parameters, which often translates to faster training and less risk of overfitting. GRUs combine
the forget and input gates into a single update gate, maintaining the ability to capture
dependencies in sequences effectively. Given resource constraints, GRUs can be a practical
choice when training time or dataset size is limited, while still capturing temporal dynamics in
text.

3.2 Transformer-based Models

RoBERTa (Robustly optimized BERT approach) is an advancement over the original
BERT model. It is pretrained on significantly larger datasets with modified training procedures
such as dynamic masking and removal of the next sentence prediction task, which improves its
generalization capabilities. Transformers use self-attention mechanisms that allow the model to
weigh the importance of different words contextually across the entire input sequence. This is
particularly advantageous for sarcasm detection, where meaning depends on subtle cues and
context that may be non-local. ROBERTa’s architecture, combined with fine-tuning on task-
specific data, enables state-of-the-art performance in understanding nuanced language.

Cracow University of Technology
Department of Computer Sciences %

4. Practical Part

Exploratory data analysis included word clouds for sarcastic and non-sarcastic comments,
comment length distributions, and subreddit analysis to understand sarcasm distribution.

4.1 Data Collection

The dataset used in this project was sourced from Kaggle and contains approximately 1.3
million comments labeled as sarcastic or non-sarcastic. The data was collected from Reddit and
other social media platforms, providing a rich, diverse corpus of natural language with real-
world examples of sarcasm. The dataset is balanced, which is crucial to prevent model bias
toward the majority class and to ensure the model learns to distinguish sarcasm effectively.

Class Distribution (Count) Class Distribution (Percentage)

500000
400000

300000
Non-Sarcastic

Number of Samples

200000

100000

Non-Sarcastic Sarcastic

4.2 Data Preprocessing
Effective preprocessing is critical for natural language tasks:

e Text Cleaning: We removed digits, punctuation, and converted all text to lowercase to
reduce noise.

def advanced preprocess(text, remove stopwords=True, lemmatize=True):

won

Advanced preprocessing with tokenization, stopword removal, and lemmatization

wan

Clean text
text = clean_text(text)

e Stopword Removal: Commonly used words with little semantic value (e.g., "the," "is")
were removed to focus on informative tokens.

Sarcastic

Department of Computer Sciences

wi ;] Cracow University of Technology

Remove stopwords
if remove_ stopwords:
tokens = [token for token in tokens if token not in stop words]

e Tokenization: Text was split into tokens (words or subwords), the fundamental units for
model input. For traditional ML models, we used word-level tokenization; for
transformer models, subword tokenization with Byte-Pair Encoding was employed.

Tokenize
tokens = word tokenize(text)

e Vectorization: For Logistic Regression and Gradient Boosting, TF-IDF vectorization
transformed tokens into numerical features reflecting word importance within documents
and across the corpus.

e Sequence Preparation: For LSTM and GRU, sequences were converted into integer
indices representing tokens, then padded to uniform length to accommodate batch
processing.

e Tokenizer Usage: The Hugging Face tokenizer tailored for RoOBERTa handles
tokenization, padding, and encoding in a way optimized for the transformer model.

Additionally, exploratory data analysis included:

e Word Clouds: Visualizing the most frequent words in sarcastic and non-sarcastic
classes, revealing distinct lexical patterns.

Create word clouds for sarcastic and non-sarcastic comments
fig, axes = plt.subplots(1l, 2, figsize=(20, 8))

Sarcastic comments word cloud

sarcastic text = ' '.join(df[df['label’] == 1]['processed comment'].tolist())

wordcloud_sarcastic = WordCloud(width=800@, height=40@, background_color="white’,
colormap="Reds"', max_words=10@).generate(sarcastic_text)

axes[@].imshow(wordcloud_sarcastic, interpolation='bilinear")
axes[@].set_title('Sarcastic Comments - Word Cloud', fontsize=16, fontweight="bold")
axes[@].axis(off")

Non-sarcastic comments word cloud

non_sarcastic_text = ' '.join(df[df['label’'] == @]['processed_comment'].tolist())

wordcloud_non_sarcastic = WordCloud(width=88@e, height=400, background_color='white’,
colormap="Blues', max_words=18@).generate(non_sarcastic_text)

axes[1].imshow(wordcloud non_sarcastic, interpolation="bilinear")
axes[1].set_title('Non-Sarcastic Comments - Word Cloud', fontsize=16, fontweight="bold")
axes[1].axis(off")

plt.tight layout()
plt.show()

Y'Y Cracow University of Technology %
.:f'u Department of Computer Sciences

Sarcastic Comments - Word Cloud

®time [Jreallyg™ need

gig‘i} newlgfd?e y egcgack Seg
going gsomethlng S

obv1ousl make

reddit

woman never

> = "

post £ s

[= W=

ame use~ er) 5 “ %\ -

g = 3 o s definitely

soun 2 bad® £ op o = 11 &

we] T

Q WO I] =y

4 +J Y % give /3

i ©

= i S

= Q) OO f“i lol [e)
o~ l\\:? (.V:' .

= peopr w20 Oeveryoneforgot] ook e

Non-Sarcastic Comments - Word Cloud

right gl . eStillpgs”

shit
L0
even used_g much Mwant l I
o ake
o

(V]
0
(o) i
S £ 3
getting oo
)w : e
put ¥ =
)
= @
o= o k
already ’ . r{_J«"ir yma e
Isomeone ey though Sroblem i
& , use
great lol -

e Comment Length Analysis: Statistical analysis showed sarcastic comments tend to be
longer on average, providing a potential discriminative feature.

b

1500

‘Word Count

1000

500

08

Capital Ratio
5]
>

o
I

02

00

(o)

o om

o

o
(<]

g
|

00

sarcasm Label (0: Non-Sarcastic, 1: Sarcastic)

00

Sarcasm Label (0: Non-Sarcastic, 1: Sarcastic)

[1 # Feature comparison between sarcastic and non-sarcastic comments

fig, axes

Cracow University of Technology
Department of Computer Sciences

plt.subplots(2, 3, figsize=(18, 12))

Define features to compare
features to compare

["word count®, ‘exclamation count’,

'question count’,

‘capital ratio', 'sentiment_compound', ‘sentiment positive']

for i1, feature in enumerate(features to compare):

row
col

i

/13

i%3

Create box plot
df_features.boxplot(column=feature, by='label’, ax=axes[row, col])
axes[row, col].set title(f'{feature.replace(” ", " ").title()}")

axes[row, col].set xlabel('Sarcasm Label (@:

axes[row, col].set_ylabel(feature.replace(

'
i

Non-Sarcastic, 1: Sarcastic)')

*).title())

plt.suptitle('Feature Comparison: Sarcastic vs Non-Sarcastic Comments’,
fontsize=16, fontweight="bold")
plt.tight layout()

plt.show()
‘Word Count

8

8

Capital Ratio

10

1.0

Feature Comparison: Sarcastic vs Non-Sarcastic Comments

Sentiment Compound

Exclamation Count

Exclamation Count

[}

o

o

00 10
sarcasm Label (0: Non-Sarcastic, 1: Sarcastic)

Sentiment Compound

l &

I

00 10
Sarcasm Label (0: Non-Sarcastic, 1: Sarcastic)

Question Count

10

08

Sentiment Positive
o
o

o
"

00

Question Count

o =]
o =]
-] (-]
L] -]
00 1.0

sarcasm Label (0: Non-Sarcastic, 1: Sarcastic)

Sentiment Positive

-]
o

00 1.0
Sarcasm Label (0: Non-Sarcastic, 1: Sarcastic)

Subreddit Analysis: Identification of subreddits with higher sarcasm rates helped
understand the context and style variations in sarcastic language.

Cracow University of Technology
Department of Computer Sciences

def get_top _words(text_list, n=2@):
Get top n words from a list of texts

all words = ' ".join(text list).split()
return Counter(all_words).most_common(n)

Get top words for each class
sarcastic words = get top words(df[df['label’] == 1]['processed comment’].tolist())
non_sarcastic words = get top words(df[df['label’'] == @]['processed comment'].tolist())

Plot top words
fig, axes = plt.subplots(1, 2, figsize=(20, 8))

Sarcastic words
words, counts = zip(*sarcastic words)

axes[@].
axes[@].
axes[@].
axes[@].
axes[@].
axes[@].

barh(range(len(words)), counts, color="red’, alpha=0.7)
set_yticks(range(len(words)))

set_yticklabels(words)

set title('Top 20 Words in Sarcastic Comments', fontsize=14, fontweight="bold")
set_xlabel('Frequency’)

invert_yaxis()

Non-sarcastic words

words, counts

axes[1].
axes[1].
axes[1].
axes[1].
axes[1].
axes[1].

Top 20 Words in Sarcastic Comments

yeah

wel

sure

2

8

think

g

ime

s
&

g

zip(*non_sarcastic_words)

barh(range(len(words)), counts, color="blue", alpha=0.7)
set_yticks(range(len(words)))

set_yticklabels(words)

set_title(Top 206 Words in Non-Sarcastic Comments', fontsize=14, fontweight="bold")
set_xlabel('Frequency’)

invert_yaxis()

Top 20 Words in Non-Sarcastic Comments

[

ot

make

wel

fuc

ool

15000
Frequency

5
g
B
g
§
g
g

15000
Frequency

§
b
H
8
H

4.3 Model Implementation

vectorization

Logistic Regression and Gradient Boosting: We built pipelines combining TF-IDF

with the respective classifier. Hyperparameters like regularization strength

(C) for Logistic Regression and learning rate and tree depth for Gradient Boosting were
tuned using grid search and cross-validation to optimize performance.

9

b

Cracow University of Technology
Department of Computer Sciences

Define and train classical ML models

models = {
"Logistic Regression': LogisticRegression(random state=42, max_iter=500),
'Random Forest': RandomForestClassifier(n_estimators=100, random state=42),
'Naive Bayes': MultinomialNB()

LSTM and GRU: Models were built using TensorFlow/Keras with embedding layers
initialized randomly and trained on the dataset. Dropout layers were included for
regularization. Due to hardware limitations, models were trained on a random subset of
the data to manage memory and computation constraints. Early stopping was employed
to prevent overfitting.

Build LSTM model
def build_lstm model():
model = Sequential(]

Embedding(MAX_VOCAB_STZE, EMBEDDING DIM, input_length=MAX_ SEQUENCE LENGTH),
LSTM(128, dropout=0.5, recurrent_dropout=6.5),
Dense(64, activation="relu'),
Dropout(®.5),
Dense(1, activation="sigmoid")

1

model. compile(
optimizer="adam’,
loss="binary_crossentropy’,
metrics=["accuracy”]

)

return model

RoBERTa: We used the Hugging Face Transformers library to fine-tune a pretrained
RoBERTa model on the sarcasm dataset. This involved adapting the final classification
layer and training with an appropriate learning rate schedule. The fine-tuning process
benefits from the rich pretraining of ROBERTa, requiring fewer epochs to converge. For
usability, a simple Tkinter-based GUI was developed to allow users to input text and
receive sarcasm detection scores.

4.4 Model Evaluation
Models were evaluated on a held-out test set using:

Accuracy: Overall proportion of correct predictions.

Precision: Ratio of correctly predicted positive observations to total predicted positives
— important for minimizing false positives.

Recall: Ratio of correctly predicted positives to all actual positives — important for
minimizing false negatives.

10

Department of Computer Sciences

wi ;] Cracow University of Technology

e F1-Score: Harmonic mean of precision and recall, providing a balanced measure useful
for imbalanced or nuanced classification tasks.

def evaluate model(y_true, y pred, y prob, model name):

Comprehensive model evaluation

Y

from sklearn.metrics import precision score, recall score, f1 score

accuracy = accuracy_score(y_true, y pred)
precision = precision_score(y true, y pred)
recall = recall score(y_true, y_pred)

f1 = f1 score(y true, y pred)

roc_auc = roc_auc_score(y true, y prob)

return {
'Model': model_name,
'Accuracy': accuracy,
'Precision’': precision,
'Recall’: recall,
'F1-Score’: 11,
'"ROC-AUC': roc_auc

Results:

e Logistic Regression and Gradient Boosting: Achieved approximately 71% accuracy
and 0.70 F1-score, confirming their effectiveness as strong baselines.

e LSTM and GRU: Showed lower accuracy (~61-62%) with signs of overfitting as
indicated by fluctuating validation metrics, suggesting the need for further tuning and
more data.

e RoBERTa: Outperformed other models significantly, leveraging deep contextual
representations to capture sarcasm’s subtle linguistic cues.

Clean Text:

11

Cracow University of Technology

% Department of Computer Sciences

def clean text(text):
Comprehensive text cleaning function

Convert to lowercase
text = text.lower()

Remove URLs
text = re.sub(r'http\S+|www\S+|https\s+", '', text, flags=re.MULTILINE)

Remove user mentions and hashtags
text = re.sub(r'@\w+|#\w+', ', text)

Remove HTML tags
text = re.sub(r'<.*?>", "', text)

Remove extra whitespace
text = re.sub(r'\s+', ' ', text).strip()

return text

5. Summary

This project successfully applied various natural language processing techniques to
the challenging task of sarcasm detection. We implemented and compared multiple models,
including traditional supervised learning algorithms (Logistic Regression and Gradient
Boosting), recurrent neural networks (LSTM and GRU), and transformer-based
architectures (RoBERTa).

Our experiments demonstrated that transformer-based models, particularly
RoBERTa, outperform both classical machine learning models and recurrent neural
networks in identifying sarcastic expressions. RoBERTa’s ability to capture complex
contextual dependencies allows it to detect subtle linguistic cues indicative of sarcasm,
which often elude simpler models.

While LSTM and GRU models showed promising results, they were limited by
longer training times and susceptibility to overfitting. Traditional models such as Logistic

Regression and Gradient Boosting provided reliable baselines with moderate
accuracy and faster training.

For future work, we recommend expanding the dataset size and diversity,
performing extensive hyperparameter tuning on transformer models, and exploring newer
architectures such as GPT or LLaMA to further enhance sarcasm detection performance.
Additionally, integrating multimodal data and contextual metadata could offer richer
insights and improve model robustness.

12

i

SRR |

o

Or

w[i] Cracow University of Technology '_13:1_,_,

Department of Computer Sciences T

Through this study, we highlight the potential of advanced NLP models to improve
understanding and detection of sarcasm in text, which is essential for enhancing sentiment
analysis, social media monitoring, and human-computer interaction systems.

6. References

[1] Dan Ofer, Sarcasm Detection Dataset, Kaggle, 2018.
[2] Natekin A., Knoll A. Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 2013.
[3] Logistic Regression - Wikipedia
[4] Hochreiter S., Schmidhuber J. Long Short-Term Memory. Neural Computation, 1997.

[5] Cho K. et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation, 2014.
[6] Liu Y. et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach, 2019.

13

	JSC “Tadeusz Kościuszko Kraków University of Technology” Faculty of Computer Science and Telecommunications
	Table of content:
	1. Abstract
	2. Introduction
	2.1 Aim
	2.2 Scope
	2.3 Methodology

	3. Theoretical Part
	3.1 Supervised Learning Algorithms
	3.2 Neural Network Models
	3.2 Transformer-based Models
	4. Practical Part
	4.1 Data Collection
	4.2 Data Preprocessing
	4.3 Model Implementation
	4.4 Model Evaluation

	5. Summary

