Cracow University of Technology

Faculty of Computer Science and Telecommunications

Natural Language Processing - Erasmus
Academic Year 2024/2025

Text Summarization Application

Luca Bazzetto
Michele Zazzaretti



Abstract

This report presents the entire development process and implementation of a text summarization appli-
cation built using Python. The main functionality is about reducing a given textual input to the most
essential sentences using Natural Language Processing techniques. The application employs TF-IDF vec-
torization and Cosine Similarity to identify the most semantically significant sentences, to produce an
extractive summary. For the graphical aspect, Tkinter was used to implement a graphical user interface
that allows the users to interact with the program giving the possibility to either pasting the text or by
uploading .txt files. This project demonstrates a practical integration of machine learning text analytics,
and software design principles for effective information condensation.



Contents

b

Regular Fxpression . . . . . ... .. ... ...
.2 __Tokenization and Stopwordsi ...................................
3 TE-IDE . . . e e
4 Cosine Similarity{ .........................................

b_Practical Pard

3.2.1 Text Preprocessing . . . . . . . . . . .. e e e e
3.2.2 Stopwords Removal and TF-IDF Vectorizatiod ....................
3.2.3  Cosine SImilaritvl . . . . . . oo o
3.2.4  Sentences Selection and Summary Generatiod .....................

» O D 4

N IO OO Utut ot ot B~ w w W NN NN

Qo



Chapter 1

Introduction

1.1 Aim

The main aim of this project is to design and implement an automated text summarization tool. This
tool extracts the most relevant sentences from a document, producing a condensed version that is both
shorter and easier to understand. Such a tool can support tasks like document review, academic research,
and content analysis.

1.2 Scope

The Scope of this project covers the design and development of a sentence-level extractive summarization
system using natural language processing techniques. It focuses exclusively on the English language input
and it utilizes static methods that are TF-IDF and Cosine Similarity, needed to compute the sentence
relevance. The project scope includes the implementation of a (GUI) through the usage of the Python’s
Tkinter library that enables the user to have an interactive engagement throughout the application usage.
Features, such as the possibility to upload the user’s own text files, and also download the text after being
summarized. The project scope excludes the abstractive summarization methods and instead focuses on
the extractive ones.

1.3 Methodology

In order to achieve the goal, we adopted a methodology that combines:

e Development: Python serves as the primary programming language, leveraging its libraries, such
as the one that has been used to develop the whole application, due to its extensive libraries that
are cited below

o Text Preprocessing: This stage involved the usage of the Regular Expression (RegEx) Python
library, for the purpose of splitting the whole text in sentences. it also involved tokenization and
stopword removal using the Natural Language Processing Toolkit NLTK Python library

¢ Feature Extraction: This methodology involves the usage of the Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) model from the Scikit-learn python library to vectorize the text with
the specific TfidfVectorizer

¢ Cosine Similarity computation: This methodology is employed to compare individual sentence
vectors with the document’s overall mean vector so that it will allow the identification of the most
relevant sentences.

¢ GUI development: the user interface is constructed using the Tkinter library, to enable seamless
interaction, including inputting or uploading text and also downloading the generated summary.

The whole project was created thanks to the usage of some crucial Python libraries that are fundamental
for the purpose of summarizing.



Chapter 2

Theoretical Part

The Text Summarization is the name of the process that involves reducing a body of text to a shorter
version that preserves its key topics, information and meaning. The goal of a text summarization is
to extract the most important contents of any text and while doing that, it will be also necessary to
eliminate redundancy and peripheral details. The summarization can be broadly categorized into two

types:

o Extractive Summarization: Selects and combines key sentences or phrases from the original
text without altering their wording. This method relies on ranking the importance of sentences
based on statistical or heuristic measures.

e Abstractive Summarization: Generates entirely new sentences that convey the essential meaning
of the original text. This technique is more complex and in general it requires deep learning or
advanced language models.

In this case we developed an extractive summarization application. This approach was chosen due to
its interpretability, simplicity, and suitability for integration with classical Natural Language Processing
techniques. In order to construct a perfectly working text summarizer, it was necessary to study and
learn from various theoretical concepts in Natural Language Processing (NLP). So in this section, we will
explain the theoretical background of the primary techniques that were used in the project.

2.1 Regular Expression

Regular expressions, commonly referred to as RegEx, are powerful tools that are used for searching and
manipulating strings based on specific patterns. They are extensively applied in text processing tasks
due to their flexibility in handling unstructured data. In the project RegEx was used to implement a way
to split the entire text into sentences.

2.2 Tokenization and Stopwords

Tokenization refers to the process of breaking text into smaller units, typically sentences of words.
Sentence-level tokenization is crucial for extractive summarization, that is our case, as each sentence
becomes a candidate for inclusion in the final summary.

Stopwords are commonly occurring words that carry little semantic weight (e.g., “the”, “is”, “and”).
These will be all filtered out using a predefined list provided by the Natural Language Toolkit NLTK.
Removing the stopwords improves the quality of the vector representation by reducing the dimensionality
and computational noise. It is important to filter out the stopwords before performing the vectorization.

2.3 TF-IDF

TF-IDF is a statistical measure that reflects how important a word is to a document in a collection or

corpus. The formula is:
TF-IDF(t,d) =TF(t,d) - IDF(t)

where:



e TF(t,d) is the frequency of the term t in the sentence
e IDF(t) is the log-scaled inverse of the number of sentences containing t
In other words, TF-IDF can be described as these two components:
o Term Frequency (TF): Measures how frequently a word appears in a sentence.

o Inverse Document Frequency (IDF): This component reduces the weight of overly frequent terms
across all sentences, as they are considered less informative.

The resulting TF-IDF vector will represent each sentence as a vector of weights corresponding to the
importance of each word, of course, in the context of the entire document. In the application, “TfidfVec-
torizer” from “scikit-learn” was used to perform this transformation efficiently.

2.4 Cosine Similarity

The Cosine Similarity is a widely used metric for measuring the similarity between the vector represen-
tation of a sentence and the average vector of the entire document that are two non-zero vectors.
A-B

<0s(0) = A3

It calculates the cosine of the angle between them, producing a value which range can be between -1 and
1:

¢ A value of 0 indicates entirely dissimilar vectors

« 1 indicates identical vectors (in terms of direction, not magnitude)

In this project the cosine similarity was used to compare each sentence vector with the mean document
vector. Sentences that are most similar to the overall document representation will be considered more
important and central to the text’s meaning and will be therefore selected for the summary.



Chapter 3

Practical Part

3.1 Environment and Libraries

The application was developed in Python, a widely used programming language. Several essential libraries
were required to implement the text summarizer, including NLTK, Scikit-learn, Tkinter, and NumPy.

NLTK: this library is fundamental for all the Natural Language Processing projects, since it in-
cludes a lot of fundamental functions such as the tokenization and the stopwords

re: Regular Expression (RegEx) library is used for the purpose of splitting the text into sentences.
sklearn: needed for the implementation of both the TF-IDF vectorization and the Cosine Similarity.
Tkinter: Graphical User Interface implementation.

NumPy: this library is needed for the creation of big matrices and multidimensional arrays, as
well as a lot of basic mathematical functions that were requested to implement some specific parts
of our projects.

3.2 Text Summarization Function

The focus of this project is about this precise function, which consists of some important processes to go
through, in order to achieve our intended goal.

3.2.1 Text Preprocessing

The first process that we will be going through is splitting the input text that the user provided into
sentences, and this will be done with the usage of the regular expression, so the re library. It could have
been done easily with the split function, but for the sake of preserving the semantics, we decided to adopt
another solution that did not delete the dots. And this is done with the following lines of code:

sentences = re.findall(rﬂ[‘.]+[.], text)

return [s.strip() for s in sentences if s.strip()]

After generating the sentences for analysis, the next step involves

3.2.2 Stopwords Removal and TF-IDF Vectorization

In order to make the sentences ready for the semantic analysis, we will download and apply the standard
list of English Stopwords, available on the nltk library, by executing in the function this line of code:

nltk.download('stopwords', quiet=True)
stop_words = nltk.corpus.stopwords.words('english)




By doing this, all those common, semantically-light words (e.g., the , is, in) will be excluded from the
analysis to improve the signal-to-noise ratio in the text representation. Subsequently in the function we
will convert all the sentences into TF-IDF vectors by using the TfidfVectorizer class from the sklearn
library. So first we will define the vectorizer, using our just defined stopwords.

vectorizer = TfidfVectorizer(stop_words = stop_words)

After this we will perform the actual vector creation:

return vectorizer.fit_transform(sentences)

So now each sentence has become a numerical vector that represents the significance of each term relative
to the entire set of all the sentences.

3.2.3 Cosine Similarity

Once vectorized, the core of the summarization algorithm relies on identifying the most accurate and
representative sentences. This will be achieved by computing the mean TF-IDF vector of all sentences
by executing this line of code:

doc_vector = np.asarray(tfidf_matrix.mean(axis=0))

Now each sentence’s cosine similarity to this mean vector will be then calculated with the below line of
code and also thanks to the cosine__similarity class from the sklearn library as well. The assumption
is that the sentences closer to the “average” document vector content are the ones that are more central
and suitable for inclusion in the summary.

return cosine_similarity(tfidf_matrix, doc_vector).flatten()

3.2.4 Sentences Selection and Summary Generation

To generate the summary, the number of sentences will be selected by the user itself, there is the possibility
for him to choose whichever percentage he prefers from a range between 10 and 90 percent of the whole
input text’s number of sentences. This method ensures that the summary is concise while retaining the
essential information.

n = max(1l, int(len(sentences) * ratio)

Now we will choose the most similar sentences and sort them in the order they originally appeared in the
document, so that the coherence will be preserved.

top_indices = scores.argsort() [-n:][::-1]

And after doing so, the last but not least thing that remains to do is joining the sentences again to
generate the summary text.

return ' '.join([sentences[i] for i in sorted(top_indices])

3.3 Graphical User Interface (GUI)

The application’s interface was designed using Python’s tkinter library with ttk (Themed Tkinter) widgets
to ensure cross-platform consistency and modern aesthetics. The GUI adopts a single-window with
three core components:



1. Input Section: A scrollable text area supporting direct text input, pasting, or file loading. Users
can upload .txt files via the Load File button.

2. Control Panel:

e Summary Length Slider: Replaces static percentage buttons with an interactive slider (10—
90%) for dynamic length adjustment.

¢ Generate Summary: Triggers the summarization process using the selected ratio.

3. Output Section: A scrollable text area displaying the generated summary, with options to Save
Summary (as .txt) or Clear All inputs/outputs.

® Text Summarizer Pro

Input Text

1am by birth a Genevese, and my familyis one of the most
distinguished of that republic. My ancestors had been for many years
counsellors and syndics, and my father ha filed several public
siuations with honour and reputation. He was respecied by all who
knew him for his integrity and indefatigable attention to public
business. He passed his younger days perpetually occupied by the
aftars of his courtry; a variety of circumstances had prevented his
marrying early, nor was it unti the deciine of ife that he became a
husband and the father of a family.

As the dircumstances of his marriage ilustrate his character, | cannot
refrain from relating them. One of his most intimate friends was a
merchant who, from a flourishing state, fel through numerous
mischances, into poverty. This man, whose name was Beaufort, was of a
proud and unbending disposiion and could ot bear to live in poverty
and oblivion in the same country where he had formerly been
distinauished for his rank and maanificence. Havina paid his debts.

Load File L ] Generate Summary
Summary

1am by birth a Genevese, and my failyis one of the most

distinguished of that republic. My ancestors had been for many years

counsellors and syndics, and my father had filed several public

stuations with honour and reputation. He passed his younger days perpetually occupied by the
affairs of his country; a variety of circumstances had prevented his

marying early, nor was it untl the dediine of ife that he became a

husband and the father of a family. This man, whose name was Beaufort, was of a

proud and unbending disposiion and could not bear to live in poverty

and oblivion in the same country where he had formerly been

distinguished for his rank and magnificence. My father loved Beaufort with the truest friendship and

was deeply grieved by his relreat in these unfortunate circumstances. Beaufort had taken effecual measures to conceal himself, and it was ten
morths before my father discovered his abode. His dauahter attended him with the areatest tendemess. but she saw

Clear Al

Figure 3.1: Main Frame

3.3.1 Style

An important part for the Graphical User Interface includes the consistent font choices, the colour
schemes, and padding enhanced ability. The buttons are styled with a dictionary-based styling pattern
to simplify the design consistency.

3.4 File Handling

The FileHandler class manages file operations:
o load_text(): Uses filedialog.askopenfilename() to read .txt files with UTF-8 encoding.

o save_summary(): Writes summaries via filedialog.asksaveasfilename(), ensuring proper file exten-
sion handling.

o Try-except blocks with messagebox alerts prevent crashes during file I/0.



Chapter 4

Summary

The project successfully developed an extractive text summarization tool capable of condensing a given
textual input into a shorter version while preserving the most relevant information. This goal has been
successfully achieved through the integration of several key components:

¢ Sentence segmentation using Regular Expression
e Vector representation via TF-IDF
o Sentence ranking using Cosine Similarity

The implementation also included a Graphical User Interface (GUI) that was built with Tkinter, which
enhances the accessibility and the user interaction. Users are provided with the option to input text
manually or upload it from a file of their own, after which summary is generated and can also be
saved locally. These features enhance the application’s versatility and user-friendly, with a potential
for further extensions or integrations into more complex systems. From a theoretical point of view, the
project incorporated core concepts of Natural Language Processing (NLP), such as the Regular Expression
(RegEx) for the text splitting, the stopword elimination, the vector space modeling and techniques for
retrieving information. Some of the encountered challenges included ensuring the sentence coherence
in the summarized output and also maintaining the performance when working with large text inputs.
These issues were mitigated thanks to ordering through each sentence and the efficient use of the cosine
similarity measure. In conclusion, the project not only fulfilled its original goal but also served as a
valuable opportunity to apply both theoretical knowledge and practical programming skills.



Bibliography

[1] H. Lane, C. Howard, and H. M. Hapke. Natural Language Processing in Action: Understanding,
Analyzing, and Generating Text with Python. Manning Publications, 2019.

[2] NLTK Team. NLTK Documentation. https://www.nltk.org/, n.d.

[3] Python Software Foundation. Tkinter Documentation. https://docs.python.org/3/library/
tkinter.html, 2023.

[4] Scikit-learn. scikit-learn: TF-IDF Vectorizer Documentation. https://scikit-learn.org/stable/
modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html, 2023.

[6] M. Summerfield. Programming in Python 3: A Complete Introduction to the Python Language.
Addison-Wesley, 2 edition, 2010.


https://www.nltk.org/
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

	Introduction
	Aim
	Scope
	Methodology

	Theoretical Part
	Regular Expression
	Tokenization and Stopwords
	TF-IDF
	Cosine Similarity

	Practical Part
	Environment and Libraries
	Text Summarization Function
	Text Preprocessing
	Stopwords Removal and TF-IDF Vectorization
	Cosine Similarity
	Sentences Selection and Summary Generation

	Graphical User Interface (GUI)
	Style

	File Handling

	Summary
	Bibliography

