Automatic Translator Based
on Iransformers

Ainhoa Lucia Pérez Gonzalez

Jose Alejandro Lopez Garcés

1. description of the work.
2. Introduction

2.1 Objective

2.2 Scope

2.3 Methodology

I. Theoretical Part

II. Practical part
Tools and Dependencies
Virtual Environment Setup
Main Code (app.py)
Code Explanation
Tests Performed
Limitations
Future Improvements
Web Interface Integration

5. Summary

6. Bibliography

1. Abstract

This project presents the development of a web tool for translating text between
multiple languages using neural machine translation models based on
Transtormers from the Hugging Face library. A Python backend with Flask is
implemented that uses specific models for each language pair, and a simple
frontend enables user interaction. The problem of unsupported direct language
pairs (such as French to German) is addressed by implementing a pivot step
through English. Dependencies, tests, limitations, and possible future

improvements are analyzed.

2. Introduction

2.1 Objective

The main objective is to create a functional automatic translator that allows
users to translate text between different languages using pretrained Transformer

models, with an extensible system able to handle unsupported language pairs.

2.2 Scope

The project covers plain text translation among common languages (e.g.,
English, Spanish, French, German) using Hugging Face models. The system
includes a REST API and a basic web interface to facilitate use. Document

translation, audio support, or pronunciation features are not included, yet.

2.3 Methodology

The Hugging Face transformers library is used to load neural machine
translation models based on the Transformer architecture. The backend is
implemented in Python with Flask to receive text and return translations. The
frontend is simple HTML/JavaScript that calls the backend via AJAX. For
unsupported language pairs (such as French to German), an intermediate step
translates first to English and then to the target language, chaining translations.

I. Theoretical Part

Transtormers are deep learning models based on attention mechanisms that
have revolutionized machine translation. Unlike traditional sequence-to-
sequence models, they process full input sequences and capture long-range
dependencies effectively.

Hugging Face provides pretrained Helsinki-NLP (opus-mt) models supporting
multilingual translation for dozens of language pairs. These models are easily

accessed through the transformers API, which includes a translation pipeline.

II. Practical Part

Tools and Dependencies

Python 3.8+: main backend language.

Flask: microframework to build REST API.

transformers: Hugging Face library to load translation models.
torch: backend for models (PyTorch).

Installation command:
pip install flask transformers torch

Virtual Environment Setup

To maintain project dependencies isolated and avoid conflicts with other Python projects or system
packages, a virtual environment was created and used for this project. This ensures a reproducible and
clean development environment.

The steps followed to create and activate the virtual environment are:

Create a virtual environment named 'venv' in the project directory
python3 -m venv venv

Activate the virtual environment
source venv/bin/activate

Using a virtual environment avoids installing packages globally on the system and makes it easy to
manage the specific versions required by the project.

To deactivate the environment when finished, simply run:

deactivate

Main Code (app.py)

from flask import Flask, request, Jjsonify
from transformers import pipeline

app = Flask(name)

Dictionary with directly supported language pairs by Helsinki-NLP models
SUPPORTED MODELS = {

("en", "es") "Helsinki-NLP/opus-mt-en-es",
("es", "en") "Helsinki-NLP/opus-mt-es-en",
("en", "fr"): "Helsinki-NLP/opus-mt-en-fr",
("fr", "en") "Helsinki-NLP/opus-mt-fr-en",
("en", "de") "Helsinki-NLP/opus-mt-en-de",
("de", "en"): "Helsinki-NLP/opus-mt-de-en",
Add more pairs as needed

Cache to store loaded models and avoid reloading
model cache = {}

def load translator(src lang, dest lang):
Load or retrieve from cache the translation pipeline for given language pair.
Returns None if no model is available.
key = (src lang, dest lang)
if key in model cache:
return model cache[key]

model name = SUPPORTED MODELS.get (key)
if not model name:
return None
translator = pipeline("translation", model=model name)
model cachel[key] = translator
return translator

def translate text(text, src lang, dest lang):
Translate text from src lang to dest lang.
If direct translation model is not available, use English as pivot:
src_lang -> English -> dest lang.
Try direct translation first
translator = load translator(src lang, dest lang)
if translator:
result = translator(text, max length=512)
return result[0] ['translation text']

If no direct model, try pivot through English
if src lang != "en" and dest lang != "en":
to english = load translator(src lang, "en")
if not to english:
raise ValueError (f"No model for {src lang} to English")
intermediate = to english(text, max length=512) [0] ['translation text']

from english = load translator ("en", dest lang)

if not from english:
raise ValueError (f"No model for English to {dest lang}")
final translation = from english(intermediate, max length=512) [0]
['translation text']
return final translation

raise ValueError (f"Translation from {src lang} to {dest lang} not supported")

@app.route ('/translate', methods=['POST'])
def translate api():

text = request.form.get ('text')
src_lang = request.form.get('src lang', 'en')
dest lang = request.form.get('dest lang', 'es')
if not text:
return jsonify({"error": "No text provided"}), 400
try:
translation = translate text(text, src lang, dest lang)

return jsonify({"translation": translation})
except Exception as e:
return jsonify({"error": str(e)}), 500

if name == " main ":
app.run (debug=True)

Code Explanation

The Flask application exposes a POST endpoint /translate which receives:
text: The text to translate
src_lang: Source language code (default 'en')

dest_lang: Target language code (default ‘es')

The core translation functionality relies on the Hugging Face transformers

library and its pipeline abstraction.

Key Hugging Face parts:

Pipeline API:

translator = pipeline("translation", model=model name)

The pipeline function creates a ready-to-use inference pipeline for a specific

task — 1n this case, “translation".

model=model name loads the pretrained model identified by model_name from

Hugging Face’s model hub (or cache).

This pipeline encapsulates all necessary steps internally: tokenization, encoding,

model forward pass, decoding, and detokenization.

Model Selection and Caching:

def load translator(src lang, dest lang):
key = (src_lang, dest lang)
if key in model cache:
return model cachelkey]

model name = SUPPORTED MODELS.get (key)
if not model name:
return None

translator = pipeline("translation", model=model name)
model cachel[key] = translator
return translator

The dictionary SUPPORTED MODELS maps language pairs to Helsinki-NLP

pretrained model names (e.g., “Helsinki-NLP/opus-mt-en-es").

load translator loads the pipeline once per language pair and caches it in
model cache to avoid expensive reloads on subsequent calls, significantly

improving performance.
If no model exists for the exact language pair, it returns None.

Translation Logic:

def translate text(text, src lang, dest lang):
translator = load translator(src lang, dest lang)
if translator:
result = translator(text, max length=512)
return result[0] ['translation text']

if src lang != "en" and dest lang != "en":
to english = load translator(src_lang, "en")
intermediate = to _english(text, max length=512) [0]
['translation text']

from english = load translator ("en", dest lang)

final translation = from english (intermediate,
max length=512) [0] ['translation text']

return final translation

raise ValueError (..)

First, it attempts a direct translation using a model for (src lang - dest lang).

If the direct model is unavailable, but both languages are different from English,
it implements a pivot translation:

- Translate from source language to English.

- Then translate from English to the target language.
This solves the problem of missing direct models between many language pairs

but at the cost of increased latency and potential minor quality loss.

max_length=512 limits the maximum token length to prevent exceeding model

capacity.
Flask API Endpoint:

@app.route('/translate', methods=['POST'])
def translate api():

translation = translate text(text, src lang, dest lang)
return jsonify({"translation": translation})

Exposes a POST endpoint /translate that expects form data with keys text,
src_lang, and dest_lang,
Calls the translation function and returns the translated text in JSON format.

Handles errors and returns appropriate H1'T'P status codes and messages.
Summary of Hugging Face usage:

The Hugging Face pipeline API abstracts all the complex steps of tokenizing
input text, running it through the Transformer model, and decoding the output
tokens back into human-readable text.

By selecting different pretrained models from the Helsinki-NLP repository, the
system supports various language pairs without retraining.

Caching loaded models optimizes performance by avoiding repeated model
loading.

The pivot translation technique leverages English as an intermediary language

to expand the coverage of translations beyond directly supported pairs

Tests Performed

Direct translation:

Translator

English German

Hello, how are you? Hallo, wie geht's?

Traducir

English to German : "Hello, how are you?" — "Hallo, wie geht’s?"

Pivot translation:

Translator

Spanish French

esto es una prueba y funciona bien C'est un test et ga marche bien.

Traducir

French to German: “esto es una prueba y funciona bien"
French to English: "This 1s a test and it works well."

English to German: "C'est un test et ¢a marche bien."

Translations were accurate and coherent within expected limits of automatic

translation.

Limitations

Pivot translation increases response time (two model calls).
Models limited to pretrained Helsinki-NLP pairs.

Text length capped to 512 tokens.

No pronunciation or document support.

PyTorch dependency may slow performance on limited hardware.

Future Improvements

Speed optimization:

Model quantization, ONNX export.

Persistent server with loaded models.

Language coverage:

Add more Helsinki-NLP or larger multilingual models.
PDF reader integration:

Extract and translate text from uploaded PDFs.
User interface enhancements:

File upload support, history, saved translations.
Pronunciation support:

Use external APIs for audio or phonetics.
Batch and multi-language translation:
Translate one text to multiple target languages.
Long text handling:

Chunking and merging translated segments.

Web Interface Integration

The project includes a simple frontend allowing users to choose source and
target languages, input text, and get translations in real time. Features:
Language selectors with swap button.

Source and target text areas.

Debounced translation to limit APT calls.

Clear text functionality.

10

5. Summary

A functional translation tool using Hugging Face Transformer models was
created, supporting multiple language pairs with pivot translation via English
when needed. The project covers both the theoretical basis of Transformer-
based translation and a practical implementation of an API and web interface.
The system 1s scalable and can be enhanced in many directions to improve

speed, functionality, and user experience.

6. Bibliography

Hugging Face Transformers Documentation. https://huggingtace.co/docs/
transformers/en/tasks/translation

Vaswani et al., "Attention is All You Need," 2017.

Wikipedia: Transformer (machine learning model). https://en.wikipedia.org/
wiki/ Transformer_(machine_learning model)

Helsinki-NLP Opus-MT Models. https://huggingtace.co/Helsinki-NLP
https:/ /github.com/huggingface/transformers

11

