
Sarcasm Detector

Presented by Danel Kanbakova,
Zhanel Aldan and Aruzhan Satybaldy

Natural Language Processing



Our Team

Kanbakova Danel Aldan Zhanel Satybaldy Aruzhan



CONTENT

1 Project is about detecting sarcasm in text, which is tricky because
sarcasm can be subtle. The goal is to build a model that can spot
sarcastic comments, especially in social media posts.

INTRODUCTION

2 We look at the basics of natural language processing and
machine learning, and how they can help us understand
sarcasm in text.

THEORETICAL PART

3 We clean the data and build a machine learning model using
Python to tell sarcastic sentences apart from regular ones.

PRACTICAL PART

4 The model was tested on real data and demonstrated a strong
ability to detect sarcasm, providing valuable insights for future
enhancements.

RESULTS

5 This project shows how NLP and machine learning can work
together to detect sarcasm, and points to ways we could
improve in the future.

SUMMARY



01
Abstract
Detecting sarcasm in text is one of the more
difficult challenges in Natural Language
Processing. In this project, we aimed to develop
and compare several machine learning and deep
learning models for sarcasm detection, using a
balanced dataset from Kaggle.
Our workflow included data exploration,
preprocessing, feature extraction, model training,
and evaluation. Transformer-based models, such
as RoBERTa, demonstrated significantly better
performance than traditional and recurrent neural
network approaches.



 Introduction
Aim
The main goal of our project is to design and evaluate different models
capable of identifying sarcasm in text data, thereby enhancing the
automated understanding of nuanced human language in digital
communication.

1

Scope
This project covers several stages: acquiring a public sarcasm detection
dataset, performing text preprocessing, building models using supervised
learning, neural networks, and transformer-based methods, and finally
evaluating these models using appropriate performance metrics.

2

Methodology
We implemented this project in Python using Jupyter Notebook. The
libraries we used include Pandas, NLTK, Scikit-learn, TensorFlow/Keras,
and Hugging Face Transformers. The workflow involved data cleaning,
feature extraction, model training, and thorough evaluation using cross-
validation and classification metrics.

3



I. Theoretical Part

82 %
Supervised Learning Algorithms
We applied two supervised algorithms:

Logistic Regression: A simple, interpretable linear classifier with fast training time.
Gradient Boosting: An ensemble learning technique that combines multiple weak
learners to build a more accurate and robust model, especially for handling non-
linear patterns.

88 %
Neural Network Models

LSTM (Long Short-Term Memory): A type of recurrent neural network effective for
sequential data and capable of capturing long-term dependencies in text.
GRU (Gated Recurrent Unit): A simplified variant of LSTM, offering similar
advantages with fewer parameters and faster training.

78 %
Transformer-Based Models

RoBERTa (A Robustly Optimized BERT Pretraining Approach): A
state-of-the-art pretrained transformer model that excels in
understanding the context and nuances of natural language.



II. Practical Part

Data Collection
We used a dataset sourced from Kaggle,
containing approximately 1.3 million text samples
labeled as sarcastic or non-sarcastic. The data
was provided in CSV format and was already
balanced between both classes.

2nd Quarter

Model
Implementation

Model
Evaluation

Data
Collection

Data
Preprocessing



Data Preprocessing Text preprocessing included several steps:
Removing URLs, punctuation, numbers, and stopwords
Applying tokenization and lemmatization
Conducting exploratory analysis to understand class
distribution and text characteristics

Model Implementation

Logistic Regression with TF-
IDF vectorization
Gradient Boosting Classifier

LSTM and GRU neural networks
using TensorFlow/Keras
RoBERTa transformer model using
Hugging Face Transformers

An example:

1 2



Model Evaluation

These metrics help us understand how accurately the
model detects sarcasm and balances between false
positives and false negatives.

80%

0,78

Accuracy

F1-score

Accuracy
01

Precision
02

Recall
03

F1-Score
04



Summary

BEST MODEL

GOALS ACHIEVED

OTHER MODELS

FUTURE WORK

Successfully applied NLP methods to detect
sarcasm in text.

Transformer-based models (especially RoBERTa)
gave the best results.

LSTM / GRU: Promising, but slow training and
overfitting issues
Traditional ML: Simple, but solid baseline

Use larger datasets
Fine-tune transformer hyperparameters
Try newer models like GPT or LLaMA



Th
ank You


