

Report

on

Chapter 6

Winning the Moon Race
with Apollo 8

prepared by

Friedrich Bödefeld
Daniel Halama

Konstantin Reber

Teacher: Radosław Kycia May 2025

Table of content

1. Abstract
2. Introduction

a. Aim
b. Scope
c. Methodology

3. Theory
4. Results
5. Summary
6. Bibliography

1. Abstract

This chapter dives into the Apollo 8 mission, a landmark in space exploration that
marked the first time any human being orbited the Moon. At its core is the concept of the
“free return” trajectory, a precisely calculated path that allowed the spacecraft to loop
around the Moon and return safely to Earth without requiring engine burns on the way
back. The chapter uses this scenario to explore the challenges of gravitational
mechanics and the elegant workarounds engineers at NASA developed to handle the
three-body problem. With Python’s turtle graphics, we simulate these complex ideas into
a visual and approachable form, showing how code can serve as a powerful tool to
understand and to help overcome the challenges encountered in engineering.

2. Introduction

a. Aim
The purpose of this project is to recreate a simplified form of the path Apollo 8
took as it looped around the Moon and returned to Earth. By building a visual
simulation of this trajectory, the project helps make sense of the orbital
mechanics that made the mission possible. It’s not about replicating exact flight
data but about understanding how engineers approached such a complex
problem and how those ideas can be translated into something visual, logical,
and learnable through code.

b. Scope
The chapter focuses on a simplified visual simulation of Apollo 8´s flight path
using Pythons turtle command. It doesn´t aim to be very realistic but instead
centring around the core idea of the free return trajectory, a route that lets the
spacecraft swing around the Moon and head back to Earth using gravitational
fields. The simulation uses basic physics and simplified assumptions to stay
manageable, while still conveying key concepts like gravity, momentum, and

orbital motion. The goal is to explore the historic space mission in an interactive
and simplified way by keeping a realistic base.

c. Methodology
To address the given problem, we used a practical approach. As a primary
resource, we used Real-World Python: A Hacker's Guide to Solving Problems by
Lee Vaughan and with Code by Eric T. Mortenson. The book guided us through the
theoretical problem of the free return trajectory and the three body problem and
introduced step by step an example code for the underlying problems.
We used the turtle command of Python to illustrate and visually simulate space,
celestial bodies and the spacecraft.
By carefully studying related literature and by the help of Real-World Python: A
Hacker's Guide to Solving Problems, we were able to resolve all difficulties.

3. Theory

a. The Free Return Trajectory
Plotting a free return trajectory is a complex function but can be simplified into a
2D simulation using some key values: the spacecraft’s starting position R₀, its
initial speed and direction V₀, and the angle between the spacecraft and the
Moon γ₀. Before heading to the Moon, the spacecraft orbits Earth, waiting in the
parking orbit for the right angle. After some final checks the rocket burn sends
the spacecraft flying toward the Moon. Since the Moon is moving, you must aim
ahead of its current position considering gravitational pull of both Earth and the
Moon. After entering the gravitational field of the moon, the spacecraft uses its
momentum and the gravitational force to sling back towards Earth.

 Fig. 1

b. The Three-Body Problem
The three-body problem is the challenge of predicting how three objects interact
through gravity. While Newton’s equations work well for two objects, adding a
third complicates the math, that it can’t be expressed through simple Algebra.
Solving it requires powerful computers and lots of calculations. In 1961, Michael
Minovitch found a practical way to handle this using the patched conic method,
which simplifies the problem by treating it as two separate two-body problems:
one near Earth and one near the Moon. In the following project, we will use this
simplification.

4. Results

a. Turtle import and initialization of variables

In this code we import from turtle graphics library the necessary classes. In a further
step, we initialize and declare variables, such as gravitational constant, number of
iterations, starting position and velocity.

b. Gravitational System class GravSys()

This code defines the class GravSys that is responsible for the gravity simulation of
multiple interacting bodies. By using the step() method, every body gets updated for
every iteration of the loop, advancing it´s position and velocity.

c. Initialization of terrestrial bodies

This Body class simulates terrestrial objects in a gravitational field and is built on
Python's Turtle graphics. When a Body is created, it gets assigned a mass, a starting
position "start_loc", a starting velocity "vel", it´s shape and is registered with the
GravSys simulation system.

d. Force and vector of terrestrial bodies

This method calculates the gravitational acceleration acting on one celestial
body from all the other bodies in the simulation. It loops through every other
body, calculates the distance between them, and applies Newton's law of
gravitation:

𝐹 = 𝐺 ∗
𝑚1𝑚2

|𝑟|2

As we only want the acceleration, we divide both sides by self.mass.

𝑎 = 𝐺 ∗
𝑚2

|𝑟|2

To apply this as a vector, we also must multiply by 𝑟

|𝑟|2, which gives us the formula

we used:

𝑎 = 𝐺 ∗
𝑚2

|𝑟|3
 ∗ 𝑟

e. Calculating movement and changing shapes

In the step() method we use the in previous steps introduced parameters as
velocity, position and acceleration of our interstellar bodies and multiplying it by
the time increment to get an updated velocity and position. In the next step, the
spacecraft slowly rotates based on where it is. Once it goes past a certain point
on the left, it changes shape and points in a new direction.

f. main()
i. Setup screen

A new window gets created with the background colour set in black

ii. Attributes of Earth and Moon

For further calculations, Earth and Moon are initialized with important attributes
such as weight, movements, gravitational system. For visual interpretation of the
calculated results both terrestrial entities are represented as a gif.

iii. CSM in Turtle

A custom spacecraft shape called 'csm' is created, using multiple components
as described in graphic Fig. 2. The ship is then initialized with position, velocity,
and appearance settings before starting the gravity simulation loop.

Fig. 2

iv. Starts program if name is equal to main()

 Fig. 3

5. Summary

As shown in Fig. 3 we were able to successfully simulate the free return trajectory using
a simplified model of the three-body problem. Even though it uses simplistic
mechanics, the program gives valuable insight into the complicity of gravitational forces
and reveals the genius of one of mankind’s brightest minds, Isaac Newton. Additionally,
we could experience the difficulties NASA engineers had to overcome almost 60 years
ahead of us.

6. Bibliography

Literature: Real-World Python: A Hacker's Guide to Solving Problems by Lee Vaughan

Code by Eric T. Mortenson with additions of the Authors of this report

Pictures: Fig. 1: Real-World Python: A Hacker's Guide to Solving Problems
 Fig. 2: Real-World Python: A Hacker's Guide to Solving Problems
 Fig. 3: own recording

