Sending Super Secret Messages with
Book Cipher

Adrian Nogales, Juan Manuel Franco and Daniel Gomollén

1. Abstract
In an age of advanced encryption and digital security, this project revisits a historical cipher technique
known as the Book Cipher. We implemented a Python-based solution that encrypts and decrypts
messages using a shared book as the key. Each character in the plaintext message is replaced by its
position in a book, and decryption uses these positions to recover the original text. This report explores
the methodology, theory, and implementation used, making it an educational journey into classical

cryptography with a modern twist.

2. Introduction

a. Aim

The goal of this project is to create a system that securely sends messages using the Book Cipher
method-where both the sender and receiver share a copy of the same book. It encrypts a message
by converting characters into position coordinates within the book and decrypts it back using those

positions.

b. Scope

This project covers:

- Reading and indexing the book text.

- Encrypting messages using character positions from the book.
- Decrypting messages using the stored positions.

- Error handling for unknown characters and malformed inputs.

- Basic use of randomness to enhance security.

c. Methodology

The implementation is done using Python, specifically utilizing:
- Text parsing and string manipulation.

- Random module for selecting varied character positions.

- File 1/O for reading the book text.

- Functions for modularity and clarity: create_index, book_cipher, and book_decipher.

3. Cryptographic Theory: Book Cipher
A Book Cipher is a type of code in which the sender and receiver use the same book to encrypt and
decrypt messages. Each character in the message is represented by its position in the book-typically

encoded as a combination of page, line, word, and letter number.

Advantages:
- Extremely difficult to break without the correct book.
- Simple to implement and understand.

- The book serves as a large and complex key.

Challenges:
- Requires both parties to have an identical copy of the book.
- Any textual inconsistency (e.g., different punctuation) can break decryption.

- Requires a method to handle characters not found in the book.

4. Implementation and Results

4.1 Indexing

The create_index(book_text) function parses the book into a list of character positions, skipping empty
lines and question marks. The format is:

(page_number, row_number, word_number, letter_index, letter)

4.2 Encryption

The book_cipher(plaintext, index) function:

- Looks up all positions for each character.

- Randomly selects one of these positions.

- Converts the character to a position string (e.g., "1:5:3:2").
- Preserves spaces and question marks.

- Replaces characters not found in the book with '?".

4.3 Decryption

The book_decipher(ciphered_list, book_text) function:

- Splits the book again.

- Extracts the original character from each given position.

- Handles errors and unknown characters by appending '?".

4.4 Results
Both encryption and decryption worked effectively, even with random positions for each letter. The
system is robust against most small errors and provides a good layer of obfuscation for casual

communication.

5. Summary

The main goal of implementing a working Book Cipher system was successfully achieved. The script
can encrypt and decrypt messages reliably, using a shared book as the key. It preserves formatting
where possible and handles exceptions gracefully. One limitation is that decryption assumes a perfect

match between the book versions used by sender and receiver.

Future improvements could include:
- Support for case sensitivity and punctuation.
- A deterministic mode for debugging.

- GUI or web interface for user interaction.

6. Bibliography
1. Wikipedia contributors. (2023). Book cipher. Wikipedia. https://en.wikipedia.org/wiki/Book_cipher
2. Wikipedia contributors. (2023). Plagiarism. Wikipedia. https://en.wikipedia.org/wiki/Plagiarism

3. Python Software Foundation. (2023). random - Generate pseudo-random numbers.

https://docs.python.org/3/library/random.html

