
Finding Pluto

(A project by Davide Vaiano and Costa Massena)

Introduction

Pluto was discovered in 1930 by the astronomer Clyde Tombaugh, 23 at the time, before he even
got his diploma.

After being hired by the Lowell Observatory just one year before, with the task of finding a
rumored planet in the Kuiper Belt, Tombaugh had a brilliant idea that allowed him to discover what
is now known as Pluto.

How did he do it?

Clyde Tombaugh’s job consisted of starring at pictures of specific star fields to find the
differences, a tideous and time consuming task. He then had the idea of using those
photographic plates combined with a blink comparator in order for the moving planet to appear
clearer among the still stars.

The blink comparator, or blink microscope, is a device used by astronomers to detect moving
objects in the sky.

It permits rapid switching from viewing one photograph to viewing the other, "blinking" back and
forth between the two images taken of the same area of the sky at different times, giving us the
impression of movement, and making it easier for us to see which part of the photo changed.

Let’s illustrate this with a small game. as you have noticed, we can see 2 similar images with 7
small differences.

Even though this one is quite easy, it takes your brain a bit of time to compare to side by side
image.

We can, on the other hand, simulate our blink simulator by just switching between slides where
the 2 images are aligned. Let’s take a look :

See ? Way easier right ? And we can apply the same thing to a star field, as showed on these 2
slides

Our objective

Our goal is to simulate the Pluto search using python.

We are given a set of photos taken one night a part of the exact same starfield, but those photos
are not aligned, which would prevent the blinker from working properly.

The file contains 6 different photos of each night, with different color or brightness filters applied
so that we can compare how fast we can detect the planet (what filter is the most efficient).

We can divide our projects into 2 big steps :

1)Making a python function that loads the images in specific files, and then a creates a new image
from the second one which is aligned with the first one.

We will use keypoints to do so

2)After we have both files with aligned images, we need to create a second function that quickly
switches from the night1 image to the night2 image with the same filter.

Costa :1) Aligning images

The images that we will compare are very similar, they only differ by the position of one light,
Pluto.

Nevertheless, the images cannot be overlayed because they are not aligned.

So how do we align them ? We use keypoints

Keypoints are distinctive, identifiable points or features in an image that can be consistently
detected across different views, lighting conditions, and transformations.

They represent locations of interest that are stable and repeatable. By overlaying these points, we
will align the images.

For example take a look at these 2 pictures. They are not aligned, and not exactly the same !
Nevertheless, some points are identical to both photos, these are keypoints, if we align them, they
will become aligned.

Let’s take a look at the code. First the find best match function

This code implements a function that finds and visualises keypoint matches between two
grayscale images using OpenCV.

The function employs the AKAZE (Accelerated-KAZE) feature detector and descriptor to identify
distinctive keypoints in both images and compute their corresponding feature descriptors.

It then uses a Brute-Force Matcher to find reliable correspondences between the keypoints of the
two images.

 The matches are sorted by their distance scores to prioritise the most similar feature pairs, and
the function creates a visual representation by drawing lines connecting matched keypoints
between the images.

It returns the sorted list of matches, the visualisation image, and the keypoints from both input
images

Then the register image function

That geometrically aligns one image to match another using feature correspondences

 The function extracts coordinate points from the matched keypoints identified in the previous
matching step,

organising them into source and destination point arrays.

It then uses OpenCV's findHomography function with the RANSAC algorithm to robustly estimate
a homography matrix that describes the geometric transformation needed to align the second
image with the first,

 Finally, the function applies this homography transformation using warpPerspective to
geometrically warp the second image so that its features align with corresponding features in the
first image.

BLINK COMPARATOR

Now that our images are aligned, we can make our blink function.

So, basically, as I said before, blinking two images makes the differences between the two
pictures taken of space reveal themselves more clearly. In our case, the only moving object in
these photos does not represent a star, but rather, represents a planet, Pluto.

During the demonstration we will see how blinking between two images works, and it’s definitely
easier to notice the difference like that.

Let’s take a look at the code:

It takes two images as input: typically the original image (img1) and the second image after it has
been precisely registered (aligned) with the first (img_registered).

There is a basic check about dimensions and type of pictures, cause if they have different sizes
they blink anyway but there could be difficulty to understand better the differences.

If they have different type the code instantly return the function without blinking.

It then enters a loop, continuously displaying img1 for a very brief period, immediately followed by
img_registered for another brief period, and then repeats. This rapid alternation creates the
"blinking" effect, crucial part for this project cause it makes notice the difference between first
image and second image.

The loop continues until you press a key on your keyboard, allowing you to manually stop the
blinking and observe any changes.

CONCLUSION

This project learned us a lot about image processing, a concept we both weren’t familiar with.

Our biggest difficulties actually concerned small details, for example we started to work on Jupiter
notebook, and it was complicated for both of us to upload the photos, which was quite frustrating
because without that we couldn’t begin the next steps.

After that, we had a few issues understanding how to align the images from the key points, but
once that was done, the rest of the coding went smoothly, and the time limit wasn’t to much of a
problem.

