Python studio

A project by Davide Vaiano and Costa Massena

HOW WAS
JTISCOVERED?

= SIS " - — -.'___f.-'*_. —
lyde T mboughSJob onsiéfed'“b”f“‘s "

gat |ctures of
= ’specmc star fields to find the differences, a tldeous anel-time
consuming task. He then had the idea of using those o
photographic plates combined with a blink comparator in
order for the moving planet to appear clearer among the

still stars.

BLINK
COMPARATOR

BLTNK

COMPARATOR

2
_

.,

...-

BLTNK

COMPARATOR

|]
a ' Y
L a =
|] o .‘
[|
-
. o . .
™ m . ‘ ¥
B B a
]
[| - L |
- - ™
" ¥ L]
'-
o
"
L}
- & *

STHAHRFIELD

STHAHRFIELD

Make a function to align 2 images using
key points

Create a blinking function to rapidly switch
between 2 images

— Q

KEJPOLINTS

— Q

KEJPOLINTS

Ui
-
Z
H
u
[L
Jl
W
X

THE CODE:

Function to register (align) the second image to the first
def register_image(matches, kpl, kp2, imgl, img2):

Function to find the best keypoint matches between two images Registers img2 to imgl using matches and the homography matrix.
def find_best_matches(imgl, img2):
Args:
Initialize the AKAZE detector/descriptor matches: List of best matches (cv2.DMatch objects).
akaze = cv2.AKAZE_create() kpl: Keypoints of image 1.
kp2: Keypoints of image 2.
Find keypoints and compute descriptors with AKAZE —_— img2: The second image (grayscale) to be registered.
kpl, desl = akaze.detectAndCompute(imgl, None) 73..;-3
kp2, des2 = akaze.detectAndCompute(img2, None)] Returns:
_ A tuple containing:
. # Initialize the Brute-Force Matcher .._. - The transformation matrix (homography H), or None in case of failure.
— bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) # Using crossCheck=True for more reliable matches — - The registered (aligned) image, or None in case of failure.
Find matches # Extract corresponding points from keypoints
matches = bf.match(desl, des2) src_pts = np.float32([kpl[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainldx].pt for m in matches]).reshape(-1, 1, 2)
Sort matches by distance (best matches are at the beginning)
matches = sorted(matches, key=lambda x: x.distance) # Find the homography matrix (the transformation to align img2 to imgl)
RANSAC is a robust algorithm that handles outliers
img_matches = None H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
if len(matches) > @:
Apply the transformation (homography) to the second image to align it with the first
try: # The output dimension is the dimension of the first image (img1l)
img_matches = cv2.drawMatches(imgl, kpl, img2, kp2, matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) height, width = imgl.shape[:2] # We use the dimensions of imgl which is available in the main loop
except TypeError as e: img_registered = cv2.warpPerspective(img2, H, (width, height))
print(f"Error drawing matches: {e}. Check image type and depth.")
img_matches = None # Ensure img_matches is None in case of error return H, img_registered
Returns all sorted matches, the drawn image, and the keypoints
return matches, img_matches, kpl, kp2

o Q

BLINK
FUNCTION

i
£

f blink(imgl, img2, window_name="Blink Images", delay_ms=500):
Performs a blinking comparison between two images.
Useful for spotting moving objects or differences between images.

Args:
imgl: The first image (NumPy array).
img2: The second image (NumPy array), ideally registered to the first.
window_name: The name for the display window.
delay_ms: Delay in milliseconds between switching images.

i

print(f"Starting 'blink' in window '{window_name}'. Press any key to stop.")

Check if images are valid and have the same dimensions
if imgl is None or img2 is None:
print("Error: One or both images for blinking are None.")
return
if imgl.shape != img2.shape:
print(f"Warning: Images for blinking have different dimensions ({imgl.shape} vs {img2.shape}). Display may be inconsistent."
Consider resizing one image here if necessary,
but ideally img_registered should already have the same size as imgl.

while True:
Display the first image
cv2.imshow(window_name, imgl)
Wait for the specified delay or until a key is pressed
key = cv2.waitKey(delay_ms)

if key != -1: # If a key was pressed, exit the loop
break
Display the second image i

cv2.imshow(window_name, img2)

Wait for the specified delay or until a key is pressed

key = cv2.waitKey(delay_ms)

if key != -1: # If a key was pressed, exit the loop
break

Close the display window when the blink is stopped
cv2.destroywWindow(window_name)
print("'Blink' stopped.")

i
£

THANKS FOR SOUR
HT T LUON

