——

Saving Shipwrecked
Sailors with
Bayes' Rule

Python Programming

INDEX

Abstract

Introduction

Aim

Methodology

Scope

Theoretical Background and Game Design

Bayesian Inference

Search success probabilities

Practical Implementation

Technologies used

Game Mechanics

User Interaction

Search Algorithm

Data initialization

Search simulation

Bayesian probability update

Cavern selection and step

Movement Constraints

Robot visual movement

Stopping condition

Step limit

Results

Summary

=) N) e & N N N L =L = T - N . N S B O R O I OV R OV I OV R OV R \C R NS NS HEN (S

Bibliography

ABSTRACT

This project presents a cave exploration game where a robot searches for lost sailors hidden in one of
three caves (A, B, or C), using Bayesian inference to update its belief based on search results. The
implementation is done in Python with Tkinter for the GUI. The specific objectives are:

- Develop an interactive simulation that applies Bayesian inference in a game context.
- Visualize probability updates and robot behavior dynamically.

- Integrate logic, statistical models, and GUI design to create an educational experience.

INTRODUCTION

AIM

The main goal of this project is to:

- Create an interactive simulation that demonstrates how Bayesian reasoning can be applied in
a game context.

- Develop a GUI-based application that visualizes probability updates and robot behavior
dynamically.

- Integrate logic, visuals, and statistical models to create an engaging and educational
experience.

METHODOLOGY

1. Design of game logic with Bayesian updating.

2. GUI development using Tkinter.

3. Creation and integration of visual assets (cave and robot images).
4. Randomized assignment of sailor location at game start.

SCOPE

The project includes game logic based on probabilistic reasoning, an interactive graphical user
interface, a simulation of an intelligent search algorithm, and numerical benchmarking using LINPACK
in C. Additionally, it serves as an educational tool for learning artificial intelligence, Bayesian logic, and
GUI programming.

On the other hand, real-time 3D graphics, multiplayer or network features, and a full-featured game
engine with object systems are not included.

THEORETICAL BACKGROUND AND GAME DESIGN

BAYESIAN INFERENCE

The robot selects the cave with the highest current probability using Bayes’ theorem:
P(H|E) = (P(E[H) * P(H)) / P(E)

In this simulation, H represents the hypothesis, which refers to the possible locations of the lost
sailors—specifically, that they are in cave A, B, or C. E stands for the evidence, which is the outcome of
each search attempt. After each search, the robot uses the result (evidence) to update the probabilities
of each hypothesis using Bayesian inference, gradually narrowing down the most likely cave where the
sailors are hidden.

SEARCH SUCCESS PROBABILITIES

The search success probabilities reflect the inherent uncertainty in the search process. When searching
the correct cave, there is a high 90% chance of successfully finding the target, indicating that the search
is very likely to yield a positive result if conducted in the right location. However, to model realistic
imperfections, there is also a 10% false positive chance when searching incorrect caves, meaning that
the search might incorrectly suggest the target is present even when it is not. This introduces a level
of uncertainty that complicates decision-making, requiring probabilistic reasoning and Bayesian
updating to interpret search outcomes accurately.

PRACTICAL IMPLEMENTATION

TECHNOLOGIES USED

- Python 3.x

- Pillow (install via pip install pillow)

- Tkinter (for GUI)

- Visual studio (IDE)

GAME MECHANICS

- Objective: Find the hidden sailors using intelligent search.

- Maximum of 10 search steps.

- Game ends when: Probability of the correct cave exceeds 0.999, or 10 searches have been performed.

USER INTERACTION

The player interacts only by clicking the "Next" button, triggering each search step.

SEARCH ALGORITHM

DATA INITIALIZATION

At the beginning, three possible caverns (A, B, and C) are defined. The true location of the sailors is
randomly chosen using random.choice(). Initial probabilities are evenly distributed (1/3 each),
representing complete uncertainty.

caverns = ['A", 'BY, 'C"]
true location = random.choice(caverns)

probabilities = {'A': 1/3, 'B': 1/3, 'C’
step = ©

SEARCH SIMULATION

This function simulates the robot searching a cavern. If the cavern is the correct one, there is a 90%
chance of detecting the sailors. If it's incorrect, there's still a 10% chance of a false positive (noise or
misleading evidence).

search(cavern):

if cavern == true location:
return random.random() < ©.9

else:

return

BAYESIAN PROBABILITY UPDATE

This module applies Bayes' Theorem to update the belief of each cavern containing the sailors. If a clue
is found in a cavern, its probability increases; otherwise, it drops and the others increase.

update probabilities(probs, searched cavern, found):
for cavern in probs:
if cavern == searched cavern:
probs[cavern] *= 6.9 if found else 8.1
else:
probs[cavern] *= 0.85 if found e
total = sum(probs.values())
for cavern in probs:
probs[cavern] /= total

CAVERN SELECTION AND STEP

At every step, the robot automatically selects the cavern with the highest current probability. This is a
greedy decision based on updated beliefs.

cavern_to search = max(probabilities, key=probabilities.get)

MOVEMENT CONSTRAINTS

ROBOT VISUAL MOVEMENT

The robot moves visually to the selected cavern by showing its image above it. It appears only in one
place at a time — the one with the highest probability.

or cavern_id in caverns:
if cavern id == cavern to search:
robot labels[cavern id].config(image=robot photo)

robot labels[cavern id].config(image="")

STOPPING CONDITION

If any cavern reaches 99.9% certainty, the simulation is stopped, and the robot is considered to have
found the sailors.

if probabilities[cavern to search]
avanzar_btn.config(state="di
result label.config(
text=f"sailors found in cavern {cavern to search}!\nSimulation stopped at step {:
)

return

STEP LIMIT

If the robot hasn’t reached a conclusion after 10 steps, the simulation stops and displays the final
probability distribution for each cavern.

if step >= 1e:
avanzar_btn.config(state="disabled™)
final msg = "\nFinal result:\n" + "\n".join(

[f"Cavern {c}: {probabilities[c] " for ¢ in caverns]

)

result label.config(text=final msg)

RESULTS

The robot updates its beliefs correctly after each search step. The GUI displays the caves, robot, and
probability values clearly, allowing users to observe how Bayesian updating works in practice. The
simulation performs reliably, consistently guiding the robot toward the correct cave.

Inital Setup Midway Point End Point

m} The search for the sailors __ [IS][ET]1 o The search for the sailors [| 03] X [=] The search for the sailors [(03]

THE SEARCH FOR THE SAILORS
Search 4

THE SEARCH FOR THE SAILORS THE SEARCH FOR THE SAILORS

Search 0 Search 2
The robot searched cavern C

2

Robot ready to search The robot searched cavern B

A BB BC.. ﬁ
033 033 0.33 m m A
M 0.09 0.09 0.82

A B, (o
0.00 0.00 1.00

|

Sailors found in cavern C!
Simulation stopped at step 4.

NEXT |

SUMMARY

The goal of the project was successfully achieved. The game correctly simulates the search for the
sailors using intelligent Bayesian inference to update probabilities after each search step.

The game runs as expected, with the robot choosing the most probable cavern to search each time. The
GUI displays the caverns, the robot, and the probabilities, providing clear feedback about the robot's
progress. The player can observe how the probabilities change with each step, which shows how the
Bayesian updating algorithm works in practice.

Although the game works as intended, there were some challenges during the development, such as
fine-tuning the image handling and ensuring smooth updates to the probabilities. However, these
issues were resolved and didn’t hinder the overall functionality.

Reflecting on the project, we learned how to implement Bayesian inference in a real-world simulation,
which helped us understand its practical application in decision-making. Additionally, it was a great
exercise in integrating logic with a user interface, especially using Tkinter for the GUI.

BIBLIOGRAPHY

e Python Software Foundation. (2023). Tkinter — Python interface to Tcl/Tk. Retrieved from
https://docs.python.org/3/library/tkinter.html

e Python Software Foundation. (2023). random — Generate pseudo-random numbers.
Retrieved from https://docs.python.org/3/library/random.html

https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/random.html

