Python Programming
Final Project Report
By Dong Jinghui
Politechnika Krakowska

2024/2025

Project Title: Process text with natural language processing (NLP)

CONTENTS

1. Abstract

2. Introduction

2.1Aim

2.2Experimental Environment
2.3Scope

2.4Methodology

3. Theoretical Part

3.INLTK Extractive Summary
3.2Sumy Abstractive Summary
3.3Word Cloud Visualization

4. Practical Part

4.1Data Input

4.2 Data Pre_processing

4.3 Analysis and Generation:
4.3.1Extractive Summary
4.3.2 Abstractive Summary
4.3.3Word Cloud Visualization
4.3.4Keyword Extraction

4.4Result and Output

5. Improvement Suggestions
6. Conclusion

7. Bibliography

1.Abstract

This experiment demonstrates the application of natural language processing (NLP)
techniques for text summarization and visualization using Python libraries. The core
objectives include generating extractive summaries with NLTK based on word
frequency, creating abstractive summaries with sumy using the LexRank algorithm,
and visualizing high-frequency keywords via WordCloud. Through a comparative
analysis of these methods, the study evaluates their performance. The results show
that extractive summarization preserves original content but may lack flow, while
abstractive summarization offers semantic coherence at the cost of potential detail
loss. WordCloud effectively highlights key themes through visual mapping of word
frequencies. The findings provide insights into tool selection for NLP tasks,
emphasizing the trade-offs between accuracy, efficiency, and interpretability.

Keywords: Natural Language Processing; Extractive Summary; Abstractive
Summary; LexRank; Word Cloud

2.Introduction

2.1Aim
Aim: Use natural language processing (NLP) text, based on NLTK, sumy and
word cloud for text summary and visualization

2.2Experimental Environment
Programming Language: Python 3.10

Libraries/Tools:

o nltk: For natural language processing tasks (tokenization, stopword
filtering, frequency statistics).

e sumy: For abstractive summarization using the LexRank algorithm.
e wordcloud + matplotlib: For keyword visualization.
o google.colab.files: For interactive text file uploads in Colab.

e re: For text cleaning via regular expressions.

Experimental Text: The Rise of Artificial Intelligence (English text).

2.3 Scope

Data Input: Handle text file uploads and manage encoding (UTF-8/GBK) to
ensure content integrity.

Preprocessing: Cleanse text by removing noise (special characters, stopwords),
standardizing case, and normalizing whitespace.

Analysis and Generation:

o Extractive Summarization: Extract key sentences using word
frequency statistics via NLTK.

o Abstractive Summarization: Generate coherent summaries using the
LexRank graph-based algorithm from sumy.

o Keyword Extraction: Identify top (high-frequency) words through
frequency distribution analysis.

e Word Cloud Visualization: Convert high-frequency words into visual
graphs using WordCloud.

Result Output: Present structured results (summaries, keywords, visualizations)
for intuitive understanding of text content and themes.

2.4Methodology

1. NLTK:Develop extractive summarization skills using NLTK’s word
frequency-based algorithm.

2. Sumy:Implement abstractive summarization with sumy’s LexRank algorithm
to generate semantically summaries.

3. WordCloud:Utilize WordCloud and Matplotlib for visual representation of
keyword distributions.

4. Compare the applicability and effectiveness of NLTK, sumy, and WordCloud
across different text analysis scenarios.

3. Theoretical Part

NLTK Extractive
Indicator Sumy Abstractive Summary Word Cloud Visualization
Summary
High-frequency word mapping
Word frequency statistics + LexRank algorithm (sentence
Core Principle (font size proportional to
sentence weighting similarity graph model)

frequency)

High (requires manual
Medium (requires parameter

implementation of Low (built-in algorithm, only
Code Complexity configuration for stopwords,
tokenization, scoring, and library functions needed)
colors, and dimensions)
sorting)

Generates coherent new

Directly extracts original Visually highlights keyword
Output sentences (integrates
sentences (may be distribution, focusing on core
Characteristics semantics but may simplify
fragmented or out of order) themes
details)
Academic literature key Long-text summarization Creative report covers, social
Suitable Scenarios sentence extraction, news (e.g., legal contracts, meeting media visualization, keyword
brief summarization records) analysis
Retains original sentences Generates summary sentences Word cloud with largest fonts
Typical Output
like "AI marks a pivotal like "Al systems are capable for "artificial",
Example
moment..." of..." "transformative", etc.
Advantages: Preserves Advantages: Intuitive and easy
Advantages: Fluent language;
Advantages and technical details; to understand;
Disadvantages: May lose
Disadvantages Disadvantages: Poor Disadvantages: Cannot display
details

coherence complete semantics

4.Practical Part

4.1Data Input

#Import necessary libraries

from google.colab import files

import nltk

import re

from sumy.parsers.plaintext import PlaintextParser

from sumy.nlp. tokenizers import Tokenizer

from sumy. summarizers. lex rank import LexRankSummarizer
from nltk. tokenize import sent tokenize, word tokenize
from nltk.corpus import stopwords

from nltk.probability import FregDist

import matplotlib. pyplot as plt

from wordcloud import WordCloud

Download NLTK resources
nltk. download (' punkt tab’)
nltk. download (" stopwords’)

Library Import and Resource Download

Function: Import all necessary Python libraries and tools for the experiment,
including text processing, summarization, and visualization.
Details:

o Import google.colab.files for uploading files in the Colab environment.

e Import nltk and its related modules for natural language processing (tokenization,
stopword filtering, word frequency statistics).

e Import the summarization algorithm (LexRank) from the sumy library for
abstractive summarization.

e Import wordcloud and matplotlib for word cloud visualization.

e Download NLTK's punkt tokenizer model and stopwords corpus.

print (“Please upload a text file (. txt format):”)
uploaded = files.upload()

£ Get the uploaded file name

filename = next(iter(uploaded.keys()))
try:

text = uploaded[filename]l. decode(’ utf-8") # Try UTF-8 decoding first
except UnicodeDecodeError:

text = uploaded[filename]. decode (" gbk’) # Try GBK decoding if needed
print (f”Successfully uploaded file: {filename}”)

File Upload and Encoding Handling

Function: Enable users to upload text files and handle different encoding formats
(UTF-8/GBK) to avoid garbled text.
Details:

e Prompt the user to upload a .txt file and retrieve the file content through an
interactive interface.

o Automatically attempt to decode the file using UTF-8; if it fails, use GBK instead.

e Output the successfully uploaded file name to confirm correct file reading.

4.2 Data Pre_processing

convert to lowercase, remove special characters, and normalize whitespace

def clean text(text):
"""Clean text: convert to lowercase, remove special characters, and normalize whitespace”™””
£ Convert to lowercase

text = text.lower()
Remove special characters and punctuation (keep spaces)
text = re.sub(r’ [a-zA-Z\s]’, 7, text)

Normalize whitespace
text = re.sub(r'\s+, ’ 7, text).strip()
return text

cleaned_text = clean_text (text)

Text Cleaning

Function: Preprocess the raw text to remove noise and improve subsequent analysis
results.

Details:

o Convert the text to lowercase to standardize the format (e.g., treat "AI" and "ai" as
the same word).

o Use regular expressions to remove special characters, punctuation, and numbers,
retaining only letters and spaces.

o Compress consecutive spaces into a single space and trim leading/trailing
whitespace to ensure clean text.

4.3Analysis and Generation:

4.3.1Extractive Summary

def generate extractive_ summary(text, num sentences=3) :
”"”Generate extractive summary using NLTK word frequency statistics”””
sentences = sent_tokenize(text)

if len(sentences) <= num_sentences:
return text

cleaned_text = clean_text(text)

words = word_tokenize (cleaned_text)

stop_words = set(stopwords.words (' english’))

filtered words = [word for word in words if word not in stop_words]

freq dist = FreqDist(filtered words)

sentence_scores = {sent: sum(freq dist[word] for word in word tokenize(sent.lower()) if word in freq dist)
for sent in sentences}

sorted_sentences = sorted(sentence scores.items(), key=lambda x: =x[1], reverse=True)

selected_sentences = [sent[0] for sent in sorted_sentences[:num_sentences]]

ordered stmmary = [sent for sent in sentences if sent in selected_sentences]

return = . join(ordered_summary)

Extractive Summarization (NLTK Word Frequency Statistics)

Function: Extract key sentences from the original text based on word frequency
statistics to generate an extractive summary.

Details:

o Split the text into sentences; return the original text directly if the number of
sentences is insufficient.

e Clean the text, tokenize it, filter out stopwords, and then count word frequencies.

e Score each sentence (sum of frequencies of high-frequency words), sort them by
score, extract key sentences, and maintain the original order to ensure logical
coherence.

4.3.2Abstractive Summary

def generate abstractive summary (text, num sentences=3):

Generate abstractive summary using sumy s LexRank algorithm”””

parser = PlaintextParser. from string(text, Tokenizer(“english”))
summarizer = LexRankSummarizer ()
summary = summarizer(parser.document, num_ sentences)

return ” 7. join([str(sentence) for sentence in summary])

Abstractive Summarization (sumy LexRank Algorithm)

Function: Use the LexRank graph model algorithm to generate an abstractive
summary by calculating sentence similarity to produce a coherent summary.

Details:

o Use sumy's parser to convert the text into an internal document object.

e Calculate sentence importance based on the LexRank algorithm, automatically
select key sentences, and generate a coherent summary without directly copying

sentences from the original text.

4.3.3Word Cloud Visualization

def generate wordcloud(text, max words=200):

""“Generate Word Cloud Visualization”””

stop_words = set(stopwords.words(’ english’))
stop_words. update ([’ said’, “could’, would,

we = WordCloud(
stopwords=stop_words,
background_color="white’,
max_words=max_words,
width=800,
height=400,
colormap="viridis’). generate (text)

plt. figure(figsize=(10, 6))
plt. imshow(we, interpolation="bilinear’)
plt.axis (' off’)

plt. title(’ Word Cloud Visualization (High-Frequency

plt. tight layout ()
plt. show()

Word Cloud Visualization

"one’, two,

Words)’)

"three’, ’'may’, now])

Function: Convert high-frequency words into a visual word cloud to intuitively

display text themes.
Details:

o Extend custom stopwords (e.g., "said", "would") to filter more meaningless words.

e Configure word cloud parameters (maximum number of words, color scheme,

size), generate the word cloud, and display it using matplotlib with axes turned off

and a title added.

4.3.4Keyword Extraction

def extract keywords(text, top n=10):
““"Extract keywords from text”””
Clean text and tokenize
cleaned text = clean_text(text)
words = word tokenize(cleaned text)

Remove stopwords
stop_words = set(stopwords.words(’ english’))
filtered words = [word for word in words if word not in stop words]

Calculate word freguency
freq dist = FreqDist(filtered_words)

Return the top n most frequent words
return freq dist.most_common (top_n)

Keyword Extraction (Based on Word Frequency)

Function: Extract high-frequency keywords from the cleaned text to assist in quickly
understanding the core content of the text.
Details:

e Clean the text again, tokenize it, filter out stopwords, and then count word
frequencies.

e Return the top N words with the highest frequencies as the core keywords of the
text.

4.4Result and Output

print (f"\nFile: {filename}”)
print (f"Text Length: {len(text)} characters”)

print (f"Number of Sentences: [len(sent_tokenize(text))}”)
print ("\n Text Preview)
preview = text[:300] + 7 if len(text) > 300 else text

print (preview)

print ("\n NLTK Extractive Summary =)
summary_nltk = generate extractive summary(text, num sentences=3)
print (summary nltk)

print ("\n Sumy Abstractive Summary 2y
summary sumy = generate abstractive summary(text, num sentences=3)
print (summary sumy)

print (“\n Keyword Extraction i
keywords = extract_keywords(text, top_n=10)
for word, freg in keywords:
print (f” {word} : {freq] occurrences”)
print ("\n Word Cloud Visualization £y

generate wordcloud(cleaned_text)

Results Display

Function: Integrate and output all analysis results, including file information,
summaries, keywords, and word cloud visualization.
Details:

e Output file name, text length, number of sentences, and other metadata.

o Display a text preview, both types of summaries (extractive and abstractive), and
the keyword list.

e Call the word cloud generation function to visualize the distribution of
high-frequency words, providing an intuitive result display.

The results are as follows:

— Keyword Extraction — —
ai: 11 occurrences
artificial: 4 occurrences
intelligence: 4 occurrences
human: 3 occurrences
learning: 3 occurrences
transformative: 2 occurrences
journey: 2 occurrences
applications: 2 occurrences
sector: 2 occurrences

power: 2 occurrences

Word Cloud Visualization (High-Frequency Words) r Lo+ oo F

pSiETena) 2uailable daiii YeoRity oo
Hlmaglna efutu ol Lases
o Pl - mfnmm : . ,.,,.Ju-, iqu mar S;_‘ o
_’9‘5 ALED expan?sng[cf)]gnltlve evolution -H
“Eﬂ%ﬁl_”“ cre n investments €X]| Concepts«l—’
s erat EQ.E:IQT'“QJE%N@Préffuh?f*yl akinygrydata 3
4+ 1F ¥~] ==
gartifircial: 1nte111gence>
:J a r ek sign ant deflned coupled ' _ plans
% q) : ou Admmsrlatue
PO mestest o] @A F N 1N Guoluie i ¢hipe
= r_4moment mlntaiawrlcs algorithnsproblemsolving

> pelx\é?og?oln ertile ' information

@ e e

Ofadvent ==drivers: & @th1Ca ke i e Snarhing

Results analysis

Keyword extraction result analysis

" "

High-frequency word core: "ai" appears 11 times, which is the most frequent
keyword; "artificial" and "intelligence" both appear 4 times. Combined, it shows
that the core theme of this paper revolves around artificial intelligence (Artificial

Intelligence).
Word cloud result analysis

The core theme is highlighted: in the word cloud, the larger the font, the higher
the frequency of occurrence. "artificial intelligence" has the largest and most
eye-catching font in the word cloud, which once again makes it clear that the
theme is artificial intelligence.

More detailed run results can be viewed in the code.

8. Improvement Suggestions

(1)Abstract algorithm upgrade: Replace with a more advanced BERT abstract
model (such as BartForConditionalGeneration in transformers library) to improve the
semantic accuracy of abstract summary.

(2)Distributed processing: For very large texts (such as millions of words), use Dask
or Spark for distributed word segmentation and statistics to improve the running
efficiency.

(3)Advanced visualization: Try dynamic word clouds (ipywordcloud library) or 3D
word clouds (python-3d-wordcloud library) to enhance interactivity.

(4)Tune parameters: The number of summary sentences can be dynamically
adjusted according to the text length. Extended stop words, customized word cloud
shape and color, etc., can optimize the efficiency and quality of NLP processing.

9. Conclusion

1. NLTK is suitable for learning the underlying logic of NLP (such as word frequency
statistics and stop word filtering), but the core algorithm needs to be implemented
manually, which is suitable for education and customized scenarios.

2. Sumy's graph-based summary algorithm is more efficient and generates coherent
results, which is suitable for processing long texts such as legal documents and
meeting records.

3. Word cloud visualization can quickly convey the theme of the text, and combined
with custom shapes (such as person head image, icon) can enhance the visual impact,
suitable for report cover or data analysis conclusion display.

4. Tool collaboration: NLTK pre processes the text — sumy, generates the summary
— wordcloud visualizes the keywords, forming a complete text analysis link.

10. Bibliography

Lee Vaughan Real World Python A Hacker’s Guide to Solving Problems with
Code No Starch Press(2020)

	Library Import and Resource Download
	File Upload and Encoding Handling
	Abstractive Summarization (sumy LexRank Algorithm)
	Keyword Extraction (Based on Word Frequency)
	Results Display

