
Python Programming

Final Project Report

By Dong Jinghui

Politechnika Krakowska

2024/2025

Project Title: Process text with natural language processing (NLP)



CONTENTS
1. Abstract

2. Introduction
2.1Aim
2.2Experimental Environment
2.3Scope
2.4Methodology

3. Theoretical Part
3.1NLTK Extractive Summary
3.2SumyAbstractive Summary
3.3Word Cloud Visualization

4. Practical Part
4.1Data Input
4.2 Data Pre_processing
4.3Analysis and Generation:

4.3.1Extractive Summary
4.3.2Abstractive Summary
4.3.3Word Cloud Visualization
4.3.4Keyword Extraction

4.4Result and Output

5. Improvement Suggestions

6. Conclusion

7. Bibliography



1.Abstract
This experiment demonstrates the application of natural language processing (NLP)
techniques for text summarization and visualization using Python libraries. The core
objectives include generating extractive summaries with NLTK based on word
frequency, creating abstractive summaries with sumy using the LexRank algorithm,
and visualizing high-frequency keywords via WordCloud. Through a comparative
analysis of these methods, the study evaluates their performance. The results show
that extractive summarization preserves original content but may lack flow, while
abstractive summarization offers semantic coherence at the cost of potential detail
loss. WordCloud effectively highlights key themes through visual mapping of word
frequencies. The findings provide insights into tool selection for NLP tasks,
emphasizing the trade-offs between accuracy, efficiency, and interpretability.

Keywords: Natural Language Processing; Extractive Summary; Abstractive
Summary; LexRank; Word Cloud



2.Introduction
2.1Aim
Aim: Use natural language processing (NLP) text, based on NLTK, sumy and
word cloud for text summary and visualization

2.2Experimental Environment
Programming Language: Python 3.10
Libraries/Tools:

 nltk: For natural language processing tasks (tokenization, stopword
filtering, frequency statistics).

 sumy: For abstractive summarization using the LexRank algorithm.
 wordcloud + matplotlib: For keyword visualization.
 google.colab.files: For interactive text file uploads in Colab.
 re: For text cleaning via regular expressions.

Experimental Text: The Rise of Artificial Intelligence (English text).

2.3 Scope

Data Input: Handle text file uploads and manage encoding (UTF-8/GBK) to
ensure content integrity.

Preprocessing: Cleanse text by removing noise (special characters, stopwords),
standardizing case, and normalizing whitespace.

Analysis and Generation:

 Extractive Summarization: Extract key sentences using word
frequency statistics via NLTK.

 Abstractive Summarization: Generate coherent summaries using the
LexRank graph-based algorithm from sumy.

 Keyword Extraction: Identify top (high-frequency) words through
frequency distribution analysis.

 Word Cloud Visualization: Convert high-frequency words into visual
graphs using WordCloud.

Result Output: Present structured results (summaries, keywords, visualizations)
for intuitive understanding of text content and themes.



2.4Methodology

1. NLTK:Develop extractive summarization skills using NLTK’s word
frequency-based algorithm.

2. Sumy:Implement abstractive summarization with sumy’s LexRank algorithm
to generate semantically summaries.

3. WordCloud:Utilize WordCloud and Matplotlib for visual representation of
keyword distributions.

4. Compare the applicability and effectiveness of NLTK, sumy, and WordCloud
across different text analysis scenarios.

3.Theoretical Part

Indicator
NLTK Extractive

Summary
Sumy Abstractive Summary Word Cloud Visualization

Core Principle
Word frequency statistics +

sentence weighting

LexRank algorithm (sentence

similarity graph model)

High-frequency word mapping

(font size proportional to

frequency)

Code Complexity

High (requires manual

implementation of

tokenization, scoring, and

sorting)

Low (built-in algorithm, only

library functions needed)

Medium (requires parameter

configuration for stopwords,

colors, and dimensions)

Output

Characteristics

Directly extracts original

sentences (may be

fragmented or out of order)

Generates coherent new

sentences (integrates

semantics but may simplify

details)

Visually highlights keyword

distribution, focusing on core

themes

Suitable Scenarios

Academic literature key

sentence extraction, news

brief summarization

Long-text summarization

(e.g., legal contracts, meeting

records)

Creative report covers, social

media visualization, keyword

analysis

Typical Output

Example

Retains original sentences

like "AI marks a pivotal

moment..."

Generates summary sentences

like "AI systems are capable

of..."

Word cloud with largest fonts

for "artificial",

"transformative", etc.

Advantages and

Disadvantages

Advantages: Preserves

technical details;

Disadvantages: Poor

coherence

Advantages: Fluent language;

Disadvantages: May lose

details

Advantages: Intuitive and easy

to understand;

Disadvantages: Cannot display

complete semantics



4.Practical Part
4.1Data Input

Library Import and Resource Download

Function: Import all necessary Python libraries and tools for the experiment,
including text processing, summarization, and visualization.
Details:

 Import google.colab.files for uploading files in the Colab environment.
 Import nltk and its related modules for natural language processing (tokenization,

stopword filtering, word frequency statistics).
 Import the summarization algorithm (LexRank) from the sumy library for

abstractive summarization.
 Import wordcloud and matplotlib for word cloud visualization.
 Download NLTK's punkt tokenizer model and stopwords corpus.



File Upload and Encoding Handling

Function: Enable users to upload text files and handle different encoding formats
(UTF-8/GBK) to avoid garbled text.
Details:

 Prompt the user to upload a .txt file and retrieve the file content through an
interactive interface.

 Automatically attempt to decode the file using UTF-8; if it fails, use GBK instead.
 Output the successfully uploaded file name to confirm correct file reading.

4.2 Data Pre_processing

Text Cleaning
Function: Preprocess the raw text to remove noise and improve subsequent analysis
results.
Details:

 Convert the text to lowercase to standardize the format (e.g., treat "AI" and "ai" as
the same word).

 Use regular expressions to remove special characters, punctuation, and numbers,
retaining only letters and spaces.

 Compress consecutive spaces into a single space and trim leading/trailing
whitespace to ensure clean text.



4.3Analysis and Generation:

4.3.1Extractive Summary

Extractive Summarization (NLTKWord Frequency Statistics)
Function: Extract key sentences from the original text based on word frequency
statistics to generate an extractive summary.
Details:

 Split the text into sentences; return the original text directly if the number of
sentences is insufficient.

 Clean the text, tokenize it, filter out stopwords, and then count word frequencies.
 Score each sentence (sum of frequencies of high-frequency words), sort them by

score, extract key sentences, and maintain the original order to ensure logical
coherence.

4.3.2Abstractive Summary

Abstractive Summarization (sumy LexRank Algorithm)



Function: Use the LexRank graph model algorithm to generate an abstractive
summary by calculating sentence similarity to produce a coherent summary.
Details:

 Use sumy's parser to convert the text into an internal document object.
 Calculate sentence importance based on the LexRank algorithm, automatically

select key sentences, and generate a coherent summary without directly copying
sentences from the original text.

4.3.3Word Cloud Visualization

Word Cloud Visualization

Function: Convert high-frequency words into a visual word cloud to intuitively
display text themes.
Details:

 Extend custom stopwords (e.g., "said", "would") to filter more meaningless words.
 Configure word cloud parameters (maximum number of words, color scheme,

size), generate the word cloud, and display it using matplotlib with axes turned off
and a title added.

4.3.4Keyword Extraction



Keyword Extraction (Based on Word Frequency)

Function: Extract high-frequency keywords from the cleaned text to assist in quickly
understanding the core content of the text.
Details:

 Clean the text again, tokenize it, filter out stopwords, and then count word
frequencies.

 Return the top N words with the highest frequencies as the core keywords of the
text.

4.4Result and Output



Results Display

Function: Integrate and output all analysis results, including file information,
summaries, keywords, and word cloud visualization.
Details:

 Output file name, text length, number of sentences, and other metadata.
 Display a text preview, both types of summaries (extractive and abstractive), and

the keyword list.
 Call the word cloud generation function to visualize the distribution of

high-frequency words, providing an intuitive result display.

The results are as follows:



Results analysis

Keyword extraction result analysis

High-frequency word core: "ai" appears 11 times, which is the most frequent
keyword; "artificial" and "intelligence" both appear 4 times. Combined, it shows
that the core theme of this paper revolves around artificial intelligence (Artificial
Intelligence).

Word cloud result analysis

The core theme is highlighted: in the word cloud, the larger the font, the higher
the frequency of occurrence. "artificial intelligence" has the largest and most
eye-catching font in the word cloud, which once again makes it clear that the
theme is artificial intelligence.

More detailed run results can be viewed in the code.



8. Improvement Suggestions

(1)Abstract algorithm upgrade: Replace with a more advanced BERT abstract
model (such as BartForConditionalGeneration in transformers library) to improve the
semantic accuracy of abstract summary.

(2)Distributed processing: For very large texts (such as millions of words), use Dask
or Spark for distributed word segmentation and statistics to improve the running
efficiency.

(3)Advanced visualization: Try dynamic word clouds (ipywordcloud library) or 3D
word clouds (python-3d-wordcloud library) to enhance interactivity.

(4)Tune parameters: The number of summary sentences can be dynamically
adjusted according to the text length. Extended stop words, customized word cloud
shape and color, etc., can optimize the efficiency and quality of NLP processing.

9. Conclusion
1. NLTK is suitable for learning the underlying logic of NLP (such as word frequency
statistics and stop word filtering), but the core algorithm needs to be implemented
manually, which is suitable for education and customized scenarios.
2. Sumy's graph-based summary algorithm is more efficient and generates coherent
results, which is suitable for processing long texts such as legal documents and
meeting records.
3. Word cloud visualization can quickly convey the theme of the text, and combined
with custom shapes (such as person head image, icon) can enhance the visual impact,
suitable for report cover or data analysis conclusion display.
4. Tool collaboration: NLTK pre_processes the text → sumy, generates the summary
→ wordcloud visualizes the keywords, forming a complete text analysis link.

10. Bibliography
Lee Vaughan_Real_World Python_A Hacker’s Guide to Solving Problems with
Code_No Starch Press(2020)


	Library Import and Resource Download
	File Upload and Encoding Handling
	Abstractive Summarization (sumy LexRank Algorithm)
	Keyword Extraction (Based on Word Frequency)
	Results Display

