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Thermodynamics
Based on [3].

Figure: Goodstein, ’States of Matter’



System

We identify some system from the environment by distinguishing
some more or less formal boundaries with some specific physical
properties (e.g., heat contact or permeability of particles). Such a
system should be macroscopically uniform in the sense of its
physical and chemical properties - a so-called simple system.



System

By practical reasons (or if we do not know that atoms exist), we
reduce a large degree of freedom to only a few.

So is there any additional variable that can point out a direction of
behaviour of the system left on its own?
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Energy change

We want to be extremely practical and minimalistic. Lets
identify how energy flows between system and environment.

Work: It is always some kind of ’external force’(F ) times the
displacement ∆r generated by this work: W = F ×∆r, e.g.,

p×∆V - pressure p induces change in volume V ;
µ×∆m - each particle changing mass by ∆m carries some
energy µ;
...

Is there any other way to transmit energy?



Energy change

We want to be extremely practical and minimalistic. Lets
identify how energy flows between system and environment.

Work: It is always some kind of ’external force’(F ) times the
displacement ∆r generated by this work: W = F ×∆r, e.g.,

p×∆V - pressure p induces change in volume V ;
µ×∆m - each particle changing mass by ∆m carries some
energy µ;
...

Is there any other way to transmit energy?



Energy change

We want to be extremely practical and minimalistic. Lets
identify how energy flows between system and environment.

Work: It is always some kind of ’external force’(F ) times the
displacement ∆r generated by this work: W = F ×∆r, e.g.,

p×∆V - pressure p induces change in volume V ;
µ×∆m - each particle changing mass by ∆m carries some
energy µ;
...

Is there any other way to transmit energy?



Energy change

We want to be extremely practical and minimalistic. Lets
identify how energy flows between system and environment.

Work: It is always some kind of ’external force’(F ) times the
displacement ∆r generated by this work: W = F ×∆r, e.g.,

p×∆V - pressure p induces change in volume V ;
µ×∆m - each particle changing mass by ∆m carries some
energy µ;
...

Is there any other way to transmit energy?



Energy change

We want to be extremely practical and minimalistic. Lets
identify how energy flows between system and environment.

Work: It is always some kind of ’external force’(F ) times the
displacement ∆r generated by this work: W = F ×∆r, e.g.,

p×∆V - pressure p induces change in volume V ;
µ×∆m - each particle changing mass by ∆m carries some
energy µ;
...

Is there any other way to transmit energy?



Energy change

We want to be extremely practical and minimalistic. Lets
identify how energy flows between system and environment.

Work: It is always some kind of ’external force’(F ) times the
displacement ∆r generated by this work: W = F ×∆r, e.g.,

p×∆V - pressure p induces change in volume V ;
µ×∆m - each particle changing mass by ∆m carries some
energy µ;
...

Is there any other way to transmit energy?



Energy change

Is there any other way to transmit energy?
Yes. It is not directed transfer called the heat Q.

Figure: Right, scene from ’Predators’ movie.

The equivalence of heat and work was observed by Julius Robert von
Mayer, who noticed the change of the blood colour of sailors under
various geographic longitudes.
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Processes

Process in Thermodynamics

A process is a change of state x→ y.

A quasi-static process is represented as a path in a state space.

A non-quasi-static process cannot be represented as a path in
a state space.

An adiabatic quasi-static process Q = 0 (change along the
path).

An adiabatic non-quasi-static process Q and W has no sense
since there is no path in a state space. U(x)−U(y) has sense.
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Processes

(1) - heating at constant volume W = 0, ∆U = Q,

(2) - quasi-static adiabatic process Q = 0, ∆U = −W ,

(3) - stirring at constant volume, adiabatic but not
quasi-static (no curve in a state space).



Energy balance vel The First Law of Thermodynamics

Lets do the budget of energy:

Internal change of energy = ±Heat transfer + ±Work done

∆U = Q−W. (1)

That is the First Law of Thermodynamics!
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The Second Law of Thermodynamics

If we leave the system isolated (adiabatically), can it change
arbitrary? NO! The system changes only in certain directions.



How about car paring?

Figure: Can we move slightly right using only forward-backward-turn
motions? From
https://debo2pt.files.wordpress.com/2013/10/parking.jpg

https://debo2pt.files.wordpress.com/2013/10/parking.jpg


How about car paring?

Figure: Yes! We Can! From https://i.pinimg.com/originals/f0/

a9/e2/f0a9e2cb7524dd88e4f6c18d1841aceb.jpg
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All is in constraints.

Car parking is nonholonomic constraint - all possible moves
allows us to explore whole available space.

The Second Law of Thermodynamics is holonomic
constraint - we must move along some prescribed
curves/surfaces in space.

For gifted amatours: This is a particular statement of Frobenius
theorem on the integrability of distribution (directions): When all
possible moves allows us to explore whole space, and when to
explore some smaller parts only.
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Entropy

This (holonomic) constraint is entropy S, and we can write (via
Frobenius theorem Q ∧ dQ = 0):

Q = T∆S, (2)

where T is the temperature (longer story).



The Second Law of Thermodynamics again

The Second Law of Thermodynamics (Caratheodory)

In every neighbourhood of every state x there are states y that are
not accessible from x via quasi-static adiabatic paths (along
which Q = 0).

We have alternative formulations (no necessary equivalent):

Second Law of Thermodynamics (Kelvin)

In quasi-static cyclic process a quantity of heat cannot be
converted entirely into its mechanical equivalent of work.

Second Law of Thermodynamics - Corollary: ’Entropy increases’

If a state y results from x by any adiabatic process (quasi-static or
not), then S(y) ≥ S(x).
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The Second Law of Thermodynamics again

Second Law of Thermodynamics - Corollary: Entropy increases

If a state y results from x by any adiabatic process (quasi-static or
not), then S(y) ≥ S(x).

In other words: in a system and environment the change of entropy
is always non-negative!!!



Thermodynamics for gifted amateurs

Lets state it precise for interested people:

There is a contact space defined by the 1-form:
θ := dU − TdS + pdV − µdm.

Thermodynamical system is described by maximal(Legendre)
submanifold Φ such that the First Law of Thermodynamics
holds: Φ∗θ = 0.

The Second Law of Thermodynamics: Q defines globally
foliation of the contact space. The leafs of foliations are
defined by the constant entropy.

The Third Law of Thermodynamics is outside of
thermodynamics: for T = 0 we have S = 0 - it fixes the scale
of entropy.

...and the Fourth Law...
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Thermodynamics for gifted amateurs

Figure: Figure from Mike Pauken, ’Thermodynamics for Dummies’, John
Wiley & Sons, 2011



Entropy, chaos and life



”The general struggle for existence of
animate beings is not a struggle for raw
materials – these, for organisms, are air,

water and soil, all abundantly available – nor
for energy which exists in plenty in any body

in the form of heat, but a struggle for
[negative] entropy, which becomes available

through the transition of energy from the hot
sun to the cold earth.” L. Boltzmann, The
second law of thermodynamics (Theoretical

physics and philosophical problems).
Springer-Verlag New York, LLC.



”Let me say first, that if I had been catering
for them [physicists] alone I should have let

the discussion turn on free energy instead. It
is the more familiar notion in this context.

But this highly technical term seemed
linguistically too near to energy for making

the average reader alive to the contrast
between the two things.” Erwin Schrödinger,

What is Life?, 1944



Entropy vs Chaos

What about ordering and its connection to entropy?

Figure: From
https://www.pinterest.com/pin/248894316882821824/.

https://www.pinterest.com/pin/248894316882821824/


The magic of entropy

High entropy (or increase of it) is USUALLY visible as increase of
chaos... However the biochemical compounds of living organisms
have entropy not drastically bigger than chaotic mixture of its
constituent atoms [6].
Lets see what we have inside:

Your Body’s Molecular Machines:
https://www.youtube.com/watch?v=X_tYrnv_o6A

Electron Transport Chain:
https://www.youtube.com/watch?v=rdF3mnyS1p0

How Enzymes Work:
https://www.youtube.com/watch?v=yk14dOOvwMk

Lets explain it in some details.

https://www.youtube.com/watch?v=X_tYrnv_o6A
https://www.youtube.com/watch?v=rdF3mnyS1p0
https://www.youtube.com/watch?v=yk14dOOvwMk
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Open systems

Figure: Open, Closed and Isolated system. Which is which? From https:

//x-engineer.org/graduate-engineering/signals-systems/

control-systems/the-concept-of-system-in-engineering/.

https://x-engineer.org/graduate-engineering/signals-systems/control-systems/the-concept-of-system-in-engineering/
https://x-engineer.org/graduate-engineering/signals-systems/control-systems/the-concept-of-system-in-engineering/
https://x-engineer.org/graduate-engineering/signals-systems/control-systems/the-concept-of-system-in-engineering/


Open systems and (bio)chemical reactions

Increase of total entropy ∆Stot is equal to the increase of the
entropy of the system ∆Ssys and the environment ∆Senv. It
should be nonegative according to The Second Law:

∆Ssys + ∆Senv = ∆Stot ≥ 0. (3)

Assume that the system and environment is in the constant
temperature T . Define:

Enthalpy change (dispersed heat):
∆Hsys := −T∆Ssys = (T∆Senv).

Gibbs free energy change: ∆G = −T∆Stot.

Then we have:
∆G = ∆Hsys − T∆Ssys. (4)

Now the Second Law is:

∆G < 0. (5)
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Open systems and (bio)chemical reactions

∆G = ∆Hsys − T∆Ssys. (6)

Figure: That is why Schrodinger talked about Enthalpy. From
https://www.khanacademy.org/science/chemistry/

thermodynamics-chemistry/gibbs-free-energy/a/

gibbs-free-energy-and-spontaneity

https://www.khanacademy.org/science/chemistry/thermodynamics-chemistry/gibbs-free-energy/a/gibbs-free-energy-and-spontaneity
https://www.khanacademy.org/science/chemistry/thermodynamics-chemistry/gibbs-free-energy/a/gibbs-free-energy-and-spontaneity
https://www.khanacademy.org/science/chemistry/thermodynamics-chemistry/gibbs-free-energy/a/gibbs-free-energy-and-spontaneity


Maxwell’s Demon

Figure: Photo from
https://www.flickr.com/photos/uaart/4582135868/

https://www.flickr.com/photos/uaart/4582135868/


Simplified experiment

Consider a single particle of ideal gas in a box (Szilard 30’).

The particle is in thermal equilibrium with thermostat(box) of
temperature T .

We will try to extract work from this system in a cycle.

Let’s start the cycle...
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Place partition in the middle.

We put the partition splitting the box in halves. Initially we do not
know where the particle is.
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Where is the particle?

We localize the particle, so we can use it to extract work.



Extract work

The work extracted in adiabatic expansion is (state equation
pV = kBT ):

W = kBT

∫ V

V/2

dV

V
= kBT ln(2). (7)



Repeat

So we returned to the beginning extracting only some work
W = kBT ln(2).
What Thermodynamics says about this situation?
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Second Law of Thermodynamics

So we returned to the beginning extracting only some work
W = kBT ln(2).
What Thermodynamics says about this situation?

No single heat source can be used to construct heat engine -
heater must be used and some heat expelled.

The change of entropy of system (heater SH) and universe
(cooler SC) must be non-negative:
∆S = SC − SH ≥ 0 → SH = QH

T = W
T ≤ SC , i.e.,

W = kB ln(2) ≤ QC/T. (8)
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Landauer’s principle

Figure: Photo from https://www.natureindex.com/article/10.

1103/physrevlett.120.020601

Landauer (70s, @IBM) associated the irreversible memory
operation (e.g. deletion) with emission of Q ≥ kBT ln(2) per
bit.

What if demon’s memory is involved in our one-particle
experiment? Let’s repeat our cycle...

https://www.natureindex.com/article/10.1103/physrevlett.120.020601
https://www.natureindex.com/article/10.1103/physrevlett.120.020601
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operation (e.g. deletion) with emission of Q ≥ kBT ln(2) per
bit.

What if demon’s memory is involved in our one-particle
experiment? Let’s repeat our cycle...

https://www.natureindex.com/article/10.1103/physrevlett.120.020601
https://www.natureindex.com/article/10.1103/physrevlett.120.020601
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The (Landauer’s) heat
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Q ≥ kBT ln(2).

There is emitted heat, so
the Second Law of
Thermodynamics is saved!
(Q ≥ TkB ln(2) = W )
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Abstract approach

Q: Assuming Landauer’s principle, is information ’level’
somehow separated from its physical realization?

This requires some ’ordering’ of entropy and some ’abstract
nonsense’ (aka Category Theory).
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Entropy and Ordering
Based on [1].
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Adiabatic accessibility

Y is adiabatically accessible from X, ( X ≺ Y ) when there is an
adiabatic process that transforms X into Y .

X ≺≺ Y if X ≺ Y and not Y ≺ X,

X ∼ Y if X ≺ Y and Y ≺ X.
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Properties of ordering

Monotonicity: X ∼ X
Transitivity: X ≺ Y and Y ≺ Z then X ≺ Z
Consistency: X ≺ X ′ and Y ≺ Y ′ implies (X,Y ) ≺ (X ′, Y ′)

Scaling invariance: λ > 0 and X ≺ Y implies λX ≺ λY
Splitting recombination: X ∼ (λX, (1− λ)X)

Stability: if (X, εZ) ≺ (Y, εZ ′) then X ≺ Y for ε→ 0+.

The ordering is a ’pullback’ of ordering from the ordering of the
real numbers...
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Entropy

Entropy

S : Γ→ R is called entropy if it fulfills

Monotonicity: X ≺ Y ⇔ S(X) ≤ S(Y )

Additivity: S(X,Y ) = S(X) + S(Y )

Extensibility: S(λX) = λS(X)

...as a conclusion:

If X ∼ Y then S(X) = S(Y ).

If X ≺≺ Y then S(X) < S(Y ).

...for adiabatic processes.
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Entropy

Theorem 4 [1]

The relation ≺ defines uniquely entropy S up to multiplicative and
additive constant.



Crash course in category theory



There are two types of people at parties:

Set-theorists - judge person on clothes (s)he wears.

Category-theorists - judge person on how (s)he interacts with
others.

V.L.

Figure: https:
//www.eventbrite.co.uk/blog/throw-an-epic-party-ds00/

https://www.eventbrite.co.uk/blog/throw-an-epic-party-ds00/
https://www.eventbrite.co.uk/blog/throw-an-epic-party-ds00/


Basic notation

Category

Category C consist of two kinds of elements

objects denoted by A,B,C, . . .;

morphisms(arrows, maps) between objects, denoted by
f, g, h, . . .;

Arrows fulfils:

Composition: If A
f−→ B and B

g−→ C, then A
g◦f−−→ C.

Associativity: (f ◦ g) ◦ h = f ◦ (g ◦ h).

There is Identity arrow: A
1A−−→ A, that fulfils:

f ◦ 1A = f = 1B ◦ f for A
f−→ B.
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Category Set

Figure: Category Set.



Left and right inverse

Figure: If g ◦ f = 1 then f is left inverse (section) and g is called right
inverse (retraction). Which set has less points?

Q: When also f ◦ g = 1?
Ans: When A and B will have ’the same number of points’. Then
f is inverse to g = f−1.
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Functors

Functor maps between different categories. It maps objects to
corresponding objects and arrows to corresponding arrows.

Figure: Schematic representation of functor.



Functors and Haskell

Lets look on functor in a different way.

fmap :: (FunctorF ) =⇒ (a→ b)→ Fa→ Fb

(Take a function f : a→ b and initial data Fa and map it to Fb.)



Functors and Haskell

fmap :: (FunctorF ) =⇒ (a→ b)→ Fa→ Fb

(Take a function f : a→ b and initial data Fa and map it to Fb.)

Figure: That is how Haskell functors act. This mechanism of wrapping
data into context helps to isolate functional from non-functional world in
Monads. From http://adit.io/posts/2013-04-17-functors,

_applicatives,_and_monads_in_pictures.html

http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html
http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html


Functors and Haskell

Array as a functor:
instance Functor [] where
fmap = map
Application:
fmap (+3) [1..3]
gives [4,5,6]
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Poset

Poset (partially ordered set) is a set P with partial order ≺. The
arrow x→ y for x, y ∈ P exists iff x ≺ y.

Figure: An example of Poset with inclusion as ordering, from Wikipedia.



Monotone map

Figure: Example of order preserving functor(map): if x→ y then
Fx→ Fy. From [5].

Order-preserving mappings

Let C = (C,4) and D = (D,v) are two posets then the mapping
(functor) F : C → D is

monotone if for any x, y ∈ C, if x 4 y, then Fx v Fy;

order-embedding if for all x, y ∈ C, x 4 y ⇔ Fx v Fy;

order-isomorphism iff F is surjective order-embedding;
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Galois connection - an example of Adjoin functors

Galois connection

A Galois connection between preorders P and Q is a pair of
monotone maps f : P → Q and g : Q→ P such that

f(p) ≤ q ⇔ p ≤ g(q). (9)

We say that f is the left adjoint and g is the right adjoint of the
Galois connection.

Figure: Example of Galois connection [5].



Galois connection - an example of Adjoin functors

The most illuminating example - theory and model:

set of theories - ordered by finer details;

set of models that realize theories - ordered by details of
realization;

The Galois connection ’realizes’ implementation of theory on
model, and abstraction of theory from model;



Galois connection - an example of Adjoin functors

The most illuminating example - theory and model:

set of theories - ordered by finer details;

set of models that realize theories - ordered by details of
realization;

The Galois connection ’realizes’ implementation of theory on
model, and abstraction of theory from model;



Galois connection - an example of Adjoin functors

The most illuminating example - theory and model:

set of theories - ordered by finer details;

set of models that realize theories - ordered by details of
realization;

The Galois connection ’realizes’ implementation of theory on
model, and abstraction of theory from model;



Galois connection - an example of Adjoin functors

The most illuminating example - theory and model:

set of theories - ordered by finer details;

set of models that realize theories - ordered by details of
realization;

The Galois connection ’realizes’ implementation of theory on
model, and abstraction of theory from model;



Entropy in category theory
See [2].



The Plan

1 state-space (G-Set) + entropy → total ordering,

2 total ordering → poset (G-poset) structure,

3 two posets → Galios (Landauer’s) connection between them.
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Ladnauer’s functors

Entropy system

The entropy system is the object of G-Pos category, which objects
are G = (Γ,4), with preserving ordering group (R+, ·, 1) action,
where the (partial or) total order is given by the entropy function
S : Γ→ R.

Galois connection in terms of entropy

Entropy system G1 = (Γ1, S1) is implemented/realized/simulated
in the entropy system G2 = (Γ2, S2) when there is a Galois
connection between them, namely, there is a functor F : G1 → G2
and a functor G : G2 → G1 such that F a G. The condition for
Galois connection:

S2(Fc) ≤ S2(d)⇔ S1(c) ≤ S1(Gd). (10)

We name the functors F and G the Landauer’s functors.
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Processes

Adiabatic reversible/irreversible processes

An entropy system map, that is a poset map f : Γ→ Γ is
reversible at p ∈ Γ, if p = f(p), that is S(p) = S(f(p)), i.e. f at p
preserves entropy. Otherwise f is irreversible at p.

Note:

This is definition for ANY poset which is induced from
’entropy’ structure.

It should work for any system, not necessary thermodynamic
one.



Main Theorem

Main Theorem

For two entropy systems G1 = (Γ1,4) and G2 = (Γ2,v), and
functors F : G1 → G2 and G : G2 → G1, we have following
possibilities for Landauer-Galois’ connections

1

Possibilities
Γ2

reversible
Γ2

irreversible

Γ1 reversible YES YES

Γ1 irreversible NO YES

for which F a G,

2 transpose above table for G a F ,

3

Possibilities
Γ2

reversible
Γ2

irreversible

Γ1 reversible YES NO

Γ1 irreversible NO YES

for which F,G are

order-embeddings; If the functors are surjective, then they are
order-isomorphisms.



Main Theorem

In short:

Figure: a is the Galois connection.



Applications
See [2].



Toy example [2, 5]

Two systems: Γ1 = (R>0, S) and Γ2 = (N>0, S) with
S(x) = x.

Consider F : Γ1 → Γ2 defined as F (z) = d z3e and
G : Γ2 → Γ1 given by G(z) = 3z.

We have obviously F a G, i.e.⌈x
3

⌉
≤ y ⇔ x ≤ 3y. (11)

Take f : Γ1 → Γ1 given by a simple shift f(z) = z + 0.2.
Irreversibility of f at x = 1: S(x) = 1. Then x̄ = f(x) = 1.2
and S(f(x)) = 1.2,
Reversibility of image map: y = F (x) = 1 with S(y) = 1,
and ȳ = F (x̄) = Ff(x̄) = 1 with S(ȳ) = 1
If we take f(x) = x then reversible (trivial) process in Γ1 is
mapped to reversible process in Γ2.
No irreversible process in Γ2 can be realized by a reversible
process in Γ1.

We restored F a G case from The Main Theorem.
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and ȳ = F (x̄) = Ff(x̄) = 1 with S(ȳ) = 1
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and ȳ = F (x̄) = Ff(x̄) = 1 with S(ȳ) = 1
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DNA computing



Evolution

Figure: Tree of life vs gene pool. Left https:
//futurism.com/theres-revised-tree-life-1000-new-species,
right http://scientificbeekeeping.com/
whats-happening-to-the-bees-part-4-the-genetic-consequences-of-domestication/

https://futurism.com/theres-revised-tree-life-1000-new-species
https://futurism.com/theres-revised-tree-life-1000-new-species
http://scientificbeekeeping.com/whats-happening-to-the-bees-part-4-the-genetic-consequences-of-domestication/
http://scientificbeekeeping.com/whats-happening-to-the-bees-part-4-the-genetic-consequences-of-domestication/


Evolution [5, 2]

(P,⊆) - population with p ⊆ q if the animal species p is also
the animal species q in the sense of specificity on the Tree of
life;

(G,≤) describes gene polls and the ordering has the following
meaning: a ≤ b when the gene pool b can be generated by the
gene pool a.

i : P → G sends each population to the gene pool that
defines it.

cl : G→ P sends each gene pool to the set of animals that
can be obtained by recombination of the given gene pool.

i a cl
Reversing the process, we can define entropy of genes and
populations. We can even define Landauer’s heat of evolution.
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